

July 10, 2013

VIA FEDERAL EXPRESS 8029161482560215

Ms. Kate Anderson Chief, Clean Water Regulatory Branch USEPA Region II 290 Broadway New York, New York 10007-1866

Subject: National Pollutant Discharge Elimination System (NPDES) Permit Application for the Aguirre Gas Port located offshore from Jobos Bay, Puerto Rico

Dear Ms. Anderson:

Tetra Tech, Inc.on the behalf of its client Aguirre Offshore GasPort LLC (AOGP), a wholly owned subsidiary of Excelerate Energy L.P. (Excelerate Energy) is submitting two (2) copies of the attached draft National Pollutant Discharge Elimination System (NPDES) application for the discharge of non-process and cooling water associated with the proposed Aguirre Offshore Gas Port Project (the Project). The Project will be located in Salinas, along the southern shore of the Commonwealth of Puerto Rico in Commonwealth waters just off shore from Jobos Bay.

As per our e-mail correspondence with USEPA representatives, attached are the following forms with supporting documentation:

- Form 1
- Form 2D (with outfall dedicated profiles)
- Project Location Map
- Water Balance for the AOGP Floating Storage Regasification Unit (FSRU) and Gas Port Platform.
- Thermal Modeling Assessment Report for Outfall 001 and 002
- Form 2F Stormwater (with copy of Form 1)

Project Background

The Project is being developed in cooperation with the Puerto Rico Electric Power Authority ("PREPA") for the purpose of receiving and storing liquefied natural gas ("LNG") to be acquired by PREPA, regasifying the LNG, and delivering natural gas to PREPA's existing Aguirre Power Complex ("Aguirre Plant"). Pursuant to Section 3 of the Natural Gas Act ("NGA"), as amended, and Parts 153 and 380 of the regulations of the Federal Energy Regulatory Commission ("FERC"), AOGP recently filed an application to the FERC for authorization to site, construct and operate the Project.

The Project will utilize Excelerate Energy's proven Energy Bridge™ technology to receive, store and vaporize LNG for delivery as natural gas utilizing one of Excelerate Energy's existing Energy Bridge

Ms. Kate Anderson USEPA Region II Page 3

Please contact me at your earliest convenience to discuss the application submittal and to continue the application process. You can reach me at (973) 630-8530 or via email at John.Schaffer@tetratech.com. I look forward to hearing from you.

Sincerely

John Schaffer

Principal Aquatic Ecologist

Enc: Aguirre GasPort NPDES Permit Application

cc: Mike Trammel, Excelerate Energy Ernest Ladkani, Excelerate Energy

Annette Feliberty Ruiz, Chief Point Sources Permits Division, PREQB

Ivelisse C. Sánchez Soultaire, Esq., PREPA

Craig Wolfgang, Tetra Tech

L EPALD NUMBER II. POLITY MAKE PLEASE PLACE LABEL IN THIS SPACE III. POLITY MAKE PLEASE PLACE LABEL IN THIS SPACE III. POLITY MAKE PLEASE PLACE LABEL IN THIS SPACE III. POLITY MAKE A COUNTY MAKE PLEASE PLACE LABEL IN THIS SPACE III. POLITY MAKE PLEASE PLACE LABEL IN THIS SPACE III. POLITY MAKE A COUNTY MAKE PLEASE PLACE LABEL IN THIS SPACE III. POLITY MAKE PLEASE PLACE LABEL IN THIS SPACE III. POLITY MAKE PLEASE PLACE LABEL IN THIS SPACE III. POLITY MAKE PLEASE PLACE LABEL IN THIS SPACE III. POLITY MAKE A COUNTY MAKE PLEASE PLACE LABEL IN THIS SPACE III. POLITY MAKE PLEASE PLACE LABEL IN THIS SPACE III. POLITY MAKE A COUNTY MAKE SPECIFIC OUESTIONS III. POLITY MAKE III. POLITY MAKE SPECIFIC OUESTIONS III. POLITY MAKE SPECIFIC OUESTIONS III. POLITY MAKE III.	GENERAL	₩EPA	Co	onsoli	dated I	NFORMA Permits Pro	aram	F			-	11/1	L D
EPALD NAMER PLEASE PLACE LABEL IN THIS SPACE	LABE	LITEMS	7 13		11151	a mar ng	jore surring j) OF HE CO.			1 14	15
The PACLITY MAILE PLEASE PLACE LASEL IN THIS SPACE PLEASE PLACE LASEL IN THIS SPACE If it is executed before any eight of the black roots and it is discovered to the process of the part of the black roots and it is executed by the process of the part of the black roots and it is executed by the process of the part of the black roots and it is executed by the process of the part of the								If a	Drepunted label has been			ix il ir	the
PLEASE PLACE LABEL IN THIS SPACE **FACILITY MALING ACCRESS** **FACILITY		*						appr	ounate bil-in area balow. Also is	iter the	correc	dala i	n lhe
PROPRIES N. FACILITY CONTROL			PLEAS	E PLA	CE LA	BEL IN TH	IS SPACE	mior	nation that should amount store	the la	ibel spe	ace list	s the
INCLUMENT CHARACTERISTICS Interception with the year need to authinit any permit application forms to the EPA. If you nessed "res" to any quantitions, year need to authinit any permit application forms to the EPA. If you nessed "res" to any quantitions, year need to authinit any permit application forms to the EPA. If you nessed "res" to any quantitions, year need to authinit any permit application forms to the EPA. If you nessed "res" to any quantitions, year need to authinite any permit application forms to the EPA. If you nessed "res" to any quantitions, year need to authinite any permit application forms to the EPA. If you nessed "res" to any quantitions, year need to authinite any permit application forms to the EPA. If you nessed "res" to any quantitions, year need to authinite any permit application forms to the EPA. If you nessed "res" to any quantitions, year need to authinite any permit application forms to the EPA. If you nessed "res" to any quantitions, year need to authinite any permit application forms to the EPA. If you nessed "res" to any quantitions, year need to authinite any permit application forms to the EPA. If you nessed "res" to any quantitions, year need to authinite any permit application forms to the EPA. If you nessed "res" to any quantitions, year need to authinite any permit applications of the EPA. If you nessed "res" to any quantitions, year need to antition and year any permit applications and year an	V. FACILITY ADDRES	Y MAILING SS		need not complete thems I, III, V, an							(except	Correct VI-B	, you which
IN POLITICATE CHARACTERISTICS NOTIFICATIONS Complete A first group 1.10 determine whether you need to submit any pound application forms to the Supplemental form is add in the personhesis indication to the supplemental form is attached in the personhesis indication in the supplemental form is attached in the personhesis indication of the supplemental form is attached incomplete. See stor, Social D of the indirections for definitions of bools daced terms. SPECIFIC OUESTIONS SPECIFIC OUESTIONS SPECIFIC OUESTIONS A Is this facility a publicly owned treatment works which is included a concentrated animal freeding operation of aquation into a station of the supplemental form is attached as concentrated animal reduction for interity which currently results in disantages to waters of the U.S.? (FORM 2A) Solvey (FORM 2C) Le bis a facility which currently results in disantages to short any other currently results	VI. FACILITY	Y LOCATION						desc	riplions and for the legal author	druntes			
SPECIFIC QUESTIONS SPECIFIC QUESTIONS SPECIFIC QUESTIONS A Is this facility aphibility owned treatment works which some content of the standard process of the standard pro								Uala	is collected				
A Is this facility appoiled yourself treatment works which results in a discharge to waters of the U.S. (FORM 2) Is this facility and protection and interest of the U.S. (FORM 2) Is this facility which currently results in discharges to waters of the U.S. other than those described in A or 8 showly (FORM 2) Is the U.S. other than those described in A or 8 showly (FORM 2) Is Does or will this facility which currently results in discharge to waters of the U.S. other than those described in A or 8 showly (FORM 2) Is Does or will this facility which currently results in discharge to waters of the U.S. other than those described in A or 8 showly (FORM 2) Is Does or will this facility which currently results in discharge to waters of the U.S. other than those described in A or 8 showly which will protect the U.S. other than those described in A or 8 showly which will protect the U.S. other than those described in A or 8 showly which will protect the U.S. other than the U.	you answer "n	o" to each question	n you need not submit any a	fibon		- 1/	" " " " THE DOX III	the EF the the	A. If you answer "yes" to an ird column if the supplement ed from permit requirement	ny que ntal fo s; see	estions rm is a	, you r attache on C o	nus d, l
As the facility a publicity owned treatment works which results in a discharge to waters of the U.S. (PCMA 2A) S. Does or will this facility (either existing or proposed) include a concentrated animal freeding operation or waters of the U.S. (PCMA 2A) S. Does or will this facility (either existing or proposed) include a concentrated animal freeding operation or waters of the U.S. other than those described in A or waters of the U.S. other than those described in A or waters of the U.S. other than those described in A or waters of the U.S. other than those described in A or waters of the U.S. other than those described in A or waters of the U.S. other than those described in A or waters of the U.S. other than those described in A or waters of the U.S. (PCMA 2) S. Does or will this facility the test store, or dispose of hazardous waters of the U.S. (PCMA 2) S. Does or will this facility the test store, or dispose of hazardous waters or other finate which are those waters or other finate which are those with an extending the other store waters with the U.S. (PCMA 3) S. Does or will this facility the test store, or dispose of the black of the U.S. (PCMA 3) S. Does or will this facility the test store, or dispose of the U.S. (PCMA 3) S. Does or will this facility the test store or waters with the U.S. (PCMA 3) S. Does or will be used the U.S. (PCMA 3) S. Does or will be used the use of the U.S. (PCMA 3) S. Does or will be used the use of the U.S. (PCMA 3) S. Does or will be used the use of the U.S. (PCMA 3) S. Does or will be used the use of the U.S. (PCMA 4) S. Does or will be used the use of the U.S. (PCMA 4) S. Does or will be used the use of the U.S. (PCMA 4) S. Does or will be used the use of the U.S. (PCMA 4) S. Does or will be used the use of the U.S. (PCMA 4) S. Does or will be used the use of the U.S. (PCMA 4) S. Does or will be used the use of the U.S. (PCMA 4) S. Does or will be used the use of the U.S. (PCMA 4) S. Does or will be used to use or will be used to use or will be used to u		SPECIFIC QUI	ESTIONS	YES	7	FORM	-		*	—			_
C. Is this a facility which currently results in discharges to the U.S. (FORM 20) E. Coos or will be facility to the facility to the surface of hexardous wastes? (FORM 20) E. Coos or will be facility to the facility to the surface of hexardous wastes? (FORM 30) E. Coos or will be facility to the facility to the surface in connection with covernment and which will potentially each of the 28 inclusion and which will potentially each of the 28 inclusion and which will potentially each and which will potentially each and which will potentially each and the facility appropriate during the covernment and which will potentially each and the facility appropriate to the instructions and which will potentially each and the covernment and the co	A. Is this facilit results in a c	nwo vlaildug 6 V	ed treatment works which		X	ATTACHED	B. Does or will this facility	, /pith	er ovining or present	YES	NO		
O. By this a proposed facility (other than those described in A By waters of the U.S.) offer than those described in A By waters of the U.S. offer(RM 2C) E. Doas or will visit facility treat, store, or dispose of hazardous wastes? (FORM 3) B. Do you or will you inject at this facility industrial or controlled in the covernous strains of the U.S.? (FORM 2C) D. Sy our will you inject at this facility industrial or controlled in the covernous strains or citier fusite which are brought of the user of the underground sources of clinking, within one quarter mile of the well bore underground sources of clinking water? (FORM 4) D. De you or will you inject at this facility industrial or municipal efflects which are brought of the user of the underground sources of clinking water? (FORM 4) D. De you or will you inject at this facility industrial or municipal efflects which is not controlled in an antient of the well bore underground sources of clinking water? (FORM 4) D. De you or will you inject at this facility industrial or municipal efflored by the proposed station or separate mile of the well bore underground sources of clinking, within one quarter mile of the well bore underground sources with a municipal efflored by the proposed station or separate many states of the 28 industrial categories listed in the instructions and which will potentially enable of the 28 industrial categories listed in the instructions and which will potentially enable of the 28 industrial categories listed in the instructions and which will potentially enable of the 28 industrial categories listed in the instructions and which will potentially enable of the 28 industrial categories listed in the instructions and which will potentially enable of the 28 industrial categories listed in the instructions and which will potentially enable of the 28 industrial categories listed in the instructions and which will potentially enable of the 28 industrial categories listed in the instructions and which will potentially enable of the 28 industr	×			18	17	10	aquatic animal product	ion f	arility which cocults in -	10	X	21	
the U.S. (FORM 2D) The Dose or will bis facility treat, store, or dispose of bazardous wastes? (FORM 3) F. Do you or will you inject at this facility inclustrial or mountaining efficient below the lowermost stratum or other fluids which are brought to the surface in connection with covernitonal of or natural gas production, inject fluids which are brought to the surface in connection with covernitonal of or natural gas production, inject fluids which are brought to the surface in connection with covernitonal of or natural gas production, inject fluids which are brought to the surface in connection with covernitonal of or natural gas production, inject fluids which are brought to the surface in connection with covernitonal of or natural gas production, inject fluids processes such as miting of the woll bore, and such as the surface in connection with covernitonal of or natural gas production, inject fluids proposed stationary source which is not of the 28 industrial categories listed in the instructions and which will potentially with 100 tons pary year of any air pollutant regulated under the Clean Air Act and may affect or be located in an attainment area? (FORM 5) II. NAME OF FACILITY A. NAME & TITLE (Inst.first. & stifle) B. PHONE (area code & no.) Michael Trammel, Senior Director Environmental Affairs A. STREET OR P.O. BOX The Woodlands A. STREET OR P.O. BOX The Woodlands A. STREET ROUTE NO. OR OTHER SPECIFIC IDENTIFIER A. STREET, ROUTE NO. OR OTHER SPECIFIC IDENTIFIER B. GILLITY LOCATION A. STREET, ROUTE NO. OR OTHER SPECIFIC IDENTIFIER B. COUNTY NAME B. COUNTY NAME C. CITY OR TOWN D. STATE D. JP CODE F. COUNTY CODE (if horny) SA JR A STATE C. JP CODE F. COUNTY CODE (if horny) SA JR A STATE C. STATE S. JP CODE F. COUNTY CODE (if horny) SA JR A STATE C. STATE S. JP CODE F. COUNTY CODE (if horny) SA JR A STATE C. STATE S. JP CODE F. COUNTY CODE (if horny) SA JR A STATE C. STATE S. JP CODE F. COUNTY CODE (if horny) SA JR A STATE C. STATE S. JP CODE F. COUNTY CODE (if horny	waters of th	ne U.S. other than	ly results in discharges to those described in A or B		X		D. Is this a proposed facility	(other	than those described in A	~		\	,
F. Do you or will you inject at this facility industrial or mourtaining, within one quarter mile of the well bore, and containing, within one quarter mile of the well bore, and containing within the precision of the well bore, and the well of the wel	above? (FOI	RM 2C)		22	23	24	the U.S.? (FORM 2D)			25	20		_
G. Do you or will you inject at this facility any produced water or other fluids which are brought to the surface in or other fluids which are brought to the surface in or other fluids which are brought to the surface in or other fluids which are brought to the surface in or other fluids which are brought to the surface in or other fluids which are brought to the surface in or other fluids which are brought to the surface in or other fluids which are brought to the surface in or other surface in surface in or other surface in or other surface in surface in or other surface in or other surface in or other surface in surface in or other surface in sur	hazardous	ill this facility tre wastes? (FORM 3	eat, store, or dispose of		X		containing, within one of	ow 1	he lowermost stratum		X		
or other fluids which are brought to the surface in connection with conventional of or natural gas production, niget fluids used for enhanced recovery of oil or natural gas production, niget fluids used for enhanced recovery of oil or natural gas production, niget fluids used for enhanced recovery of oil or natural gas gas or inject fluids for storage of liquid hydrocarbons? Is this facility a proposed stationary source which is one of the 28 industrial categories listed in the instructions and which will potentially emit 200 flors per year of any air pollutant regulated under the Clean Air Act and may affect or be located in an attainment area? (FORM 5) Is this facility a proposed stationary source which is one of the 28 industrial categories listed in the instructions and which will potentially emit 200 flors per year of any air pollutant regulated under the Clean Air Act and may affect or be located in an attainment area? (FORM 5) Is this facility a proposed stationary source which is one of the 28 industrial categories listed in the instructions and which will potentially emit 200 flors per year of any air pollutant regulated under the Clean Air Act and may affect or be located in an attainment area? (FORM 5) Is this facility a proposed stationary source which is not of the 28 industrial categories listed in the instructions and which will potentially emit 200 flors per year of any air pollutant regulated under the Clean Air Act and may affect or be located in an attainment area? (FORM 5) Is this facility a proposed stationary source which is not of any air pollutant regulated under the Clean Air Act and may affect or be located in an attainment area? (FORM 5) Is this facility a proposed stationary source which is not of any air pollutant regulated under the Clean Air Act and may affect or be located in an attainment area? (FORM 5) Is this facility a proposed stationary source which is not of the 28 industrial categories listed in the instructions and the control of the 28 industrial ca	G. Do you or wi	ill you inject at this	facility and the second	20	29	30	underground sources of di	rinking	water? (FORM 4)	31	32	33	
II. NAME OF FACILITY Skip Aguirre Offshore Gas Port W. FACILITY MAILING ADDRESS A. STREET OR P.O. BOX B. CITY OR TOWN B. CITY OR TOWN C. STATE A. STREET, ROUTE NO. OR OTHER SPECIFIC IDENTIFIER B. COUNTY NAME C. CITY OR TOWN C. C. CITY OR TOWN D. STATE B. ZIP COOE F. COUNTY CODE (If innown) Salinas C. CITY OR TOWN D. STATE C. ZIP CODE F. COUNTY CODE (If innown) Salinas C. CITY OR TOWN D. STATE C. ZIP CODE F. COUNTY CODE (If innown) Salinas C. CITY OR TOWN D. STATE C. ZIP CODE F. COUNTY CODE (If innown) Salinas C. CITY OR TOWN D. STATE C. ZIP CODE F. COUNTY CODE (If innown) Salinas C. CITY OR TOWN D. STATE C. ZIP CODE F. COUNTY CODE (If innown) Salinas C. CITY OR TOWN D. STATE C. ZIP CODE F. COUNTY CODE (If innown) Salinas C. CITY OR TOWN D. STATE C. ZIP CODE F. COUNTY CODE (If innown) Salinas C. CITY OR TOWN D. STATE F. COUNTY CODE (If innown) Salinas C. CITY OR TOWN D. STATE F. COUNTY CODE (If innown) Salinas C. CITY OR TOWN D. STATE F. COUNTY CODE F. COUNTY CODE (If innown) Salinas C. CITY OR TOWN D. STATE F. COUNTY CODE F. COUNTY CODE F. COUNTY CODE Salinas C. CITY OR TOWN D. STATE F. COUNTY CODE Salinas C. CITY OR TOWN D. STATE F. COUNTY CODE Salinas C. CITY OR TOWN D. STATE F. COUNTY CODE Salinas C. CITY OR TOWN D. STATE F. COUNTY CODE Salinas C. CITY OR TOWN D. STATE F. COUNTY CODE Salinas C. CITY OR TOWN D. STATE F. COUNTY CODE Salinas Salinas C. CITY OR TOWN D. STATE F. COUNTY CODE Salinas	or other fluction vinject fluids	iids which are b vith conventional o used for enhance	prought to the surface in all or natural gas production, direcovery of oil or natural		×		solution mining of minera	of sul	fur by the Frasch process,		×		
of the 29 industrial categories listed in the instructions and which will potentially emit 250 tons per year of any air pollutant regulated under the Clean Air Act and may affect or the located in an attainment area? (FORM 5) II. NAME OF FACILITY SKIP Aguirre Offshore Gas Port A. NAME & TITLE (last, first, & title) Michael Trammel, Senior Director Environmental Affairs (832) 813-7629 Michael Trammel, Seni	(FORM 4)			34	35	26				37	38	39	
A. STREET OR P.O. BOX 1. ASTREET OR P.O. BOX 1. ASTREET, ROUTE NO. OR OTHER SPECIFIC IDENTIFIER 3. M. FACILITY LOCATION 4. A. STREET, ROUTE NO. OR OTHER SPECIFIC IDENTIFIER 3. M. STREET, ROUTE NO. OR OTHER SPECIFIC IDENTIFIER 3. M. STREET, ROUTE NO. OR OTHER SPECIFIC IDENTIFIER 3. M. STREET, ROUTE NO. OR OTHER SPECIFIC IDENTIFIER 3. M. STREET, ROUTE NO. OR OTHER SPECIFIC IDENTIFIER 3. M. STREET, ROUTE NO. OR OTHER SPECIFIC IDENTIFIER 3. M. STREET, ROUTE NO. OR OTHER SPECIFIC IDENTIFIER 4. SECOUNTY NAME 5. Secounty (Lat. 17 deg. 54 14 " Long. 66 deg. 13" 49 ") 5. Secounty (Lat. 17 deg. 54 14" Long. 66 deg. 13" 49 ") 5. Secounty (Lat. 17 deg. 54 14" Long. 66 deg. 13" 49 ") 5. Secounty (Lat. 17 deg. 54 14" Long. 66 deg. 13" 49 ") 5. Secounty (Lat. 17 deg. 54 14" Long. 66 deg. 13" 49 ") 6. Secounty (Lat. 17 deg. 54 14" Long. 66 deg. 13" 49 ") 6. Secounty (Lat. 17 deg. 54 14" Long. 66 deg. 13" 49") 6. Secounty (Lat. 17 deg. 54 14" Long. 66 deg. 13" 49") 7. Secounty (Lat. 17 deg. 54 14" Long. 66 deg. 13" 49") 7. Secounty (Lat. 17 deg. 54 14" Long. 66 deg. 13" 49") 7. Secounty (Lat. 17 deg. 54 14" Long. 66 deg. 13" 49") 8. Secounty (Lat. 17 deg. 54 14" Long. 66 deg. 13" 49") 8. Secounty (Lat. 17 deg. 54 14" Long. 66 deg. 13" 49") 8. Secounty (Lat. 17 deg. 54 14" Long. 66 deg. 13" 49") 8. Secounty (Lat. 17 deg. 54 14" Long. 66 deg. 13" 49") 8. Secounty (Lat. 17 deg. 54 14" Long. 66 deg. 13" 49") 8. Secounty (Lat. 17 deg. 54 14" Long. 66 deg. 13" 49") 8. Secounty (Lat. 17 deg. 54 14" Long. 66 deg. 13" 49") 8. Secounty (Lat. 17 deg. 54 14" Long. 66 deg. 13" 49") 8. Secounty (Lat. 17 deg. 54 14" Long. 66 deg. 13" 49") 8. Secounty (Lat. 17 deg. 54 14" Long. 66 deg. 13" 49") 8. Secounty (Lat. 17 deg. 54 14" Long. 66 deg. 13" 49") 8. Secounty (Lat. 17 deg. 54 14" Long. 66 deg. 13" 49")	which will pe	ustrial categories I otentially emit 100 ulated under the C	isted in the instructions and to tons per year of any air		X		instructions and which wi	lustrial	categories listed in the		X		
SKIP Aguirre Offshore Gas Port N. NAME & TITLE (last, first, & title) A. NAME & TITLE (last, first, & title) Michael Trammel, Senior Director Environmental Affairs A. STREET OR P.O. BOX 1450 Lake Robbins Drive, Suite 200 B. CITY OR TOWN C. STATE A. STREET, ROUTE NO. OR OTHER SPECIFIC IDENTIFIER A. STREET, ROUTE NO. OR OTHER SPECIFIC IDENTIFIER A. STREET, ROUTE NO. OR OTHER SPECIFIC IDENTIFIER B. COUNTY NAME C. CITY OR TOWN C. CITY OR TOWN D. STATE E. ZIP CODE F. COUNTY CODE (If known) C. STATE B. COUNTY CODE (If known) C. STATE B. COUNTY CODE (If known) D. STATE F. D. ZIP CODE F. COUNTY CODE (If known) D. STATE SAlinas D. STATE D. ZIP CODE F. COUNTY CODE (If known) D. STATE D. ZIP CODE F. COUNTY CODE (If known) D. STATE D. ZIP CODE F. COUNTY CODE (If known) D. STATE D. ZIP CODE F. COUNTY CODE (If known) D. STATE D. ZIP CODE F. COUNTY CODE (If known) D. STATE D. ZIP CODE F. COUNTY CODE (If known) D. STATE D. ZIP CODE F. COUNTY CODE (If known) D. STATE D. ZIP CODE F. COUNTY CODE (If known) D. STATE D. ZIP CODE F. COUNTY CODE (If known) D. STATE D. ZIP CODE F. COUNTY CODE (If known) D. STATE D. ZIP CODE D. STATE D. ZIP CO	or be located	l in an attainment a	area? (FORM 5)	40	41	42	and may affect or be lo	cated	in an attainment area?	43	44	45	
A. NAME & TITLE. (last, first, & title) A. NAME & TITLE. (last, first, & title) B. PHONE (area code & no.) Michael Trammel, Senior Director Environmental Affairs (832) 813-7629 A. STREET OR P.O. BOX A. STREET OR P.O. BOX A. STREET OR P.O. BOX D. ZIP CODE The Woodlands B. CITY OR TOWN C. STATE D. ZIP CODE TX 77380 A. STREET, ROUTE NO. OR OTHER SPECIFIC IDENTIFIER A. STREET, ROUTE NO. OR OTHER SPECIFIC IDENTIFIER B. COUNTY NAME Salinas County Lat. 17 deg. 54 14 10ng. 66 deg. 13 49 1 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	SKIP A		shore Gas Port			1-1-1		T				May 2	
Michael Trammel, Senior Director Environmental Affairs (832) 813-7629 A. STREET OR P.O. BOX A. STREET OR P.O. BOX B. CITY OR TOWN C. STATE D. ZIP CODE The Woodlands A. STREET, ROUTE NO. OR OTHER SPECIFIC IDENTIFIER A. STREET, ROUTE NO. OR OTHER SPECIFIC IDENTIFIER B. COUNTY NAME Salinas County (Lat. 17 deg. 54 14 12 Long. 66 deg. 13 49 11) C. CITY OR TOWN D. STATE E. ZIP CODE F. COUNTY CODE ((f known)) C. CITY OR TOWN D. STATE E. ZIP CODE F. COUNTY CODE ((f known)) PR 00751 NA PA FORM 3510-1 (8-90)		CONTACT								69	200		
A. STREET OR P.O. BOX B. CITY OR TOWN C. STATE A. STREET, ROUTE NO. OR OTHER SPECIFIC IDENTIFIER A. STREET, ROUTE NO. OR OTHER SPECIFIC IDENTIFIER B. COUNTY NAME B. COUNTY NAME C. C. CITY OR TOWN D. STATE C. C. CITY OR TOWN C. C. STATE D. ZIP CODE TX 77380 Salinas C. C. CITY OR TOWN D. STATE E. ZIP CODE F. COUNTY CODE (If' known) Salinas C. C. CITY OR TOWN D. STATE FR. 00751 NA PA Form 3510-1 (8-90)	c Michael	7 Example 1									10 7		12
A. STREET OR P.O. BOX A. STREET OR P.O. BOX B. CITY OR TOWN C. STATE TX TX T7380 D. ZIP CODE TX TX TX T380 A. STREET, ROUTE NO. OR OTHER SPECIFIC IDENTIFIER B. COUNTY NAME B. COUNTY NAME B. COUNTY NAME C. CITY OR TOWN D. STATE E. ZIP CODE F. COUNTY CODE (If known) Salinas C. CITY OR TOWN D. STATE FR 00751 NA PA Form 3510-1 (8-90)	15 18		Senior Directo	or I	invi	ronmer					A Jo		
B. CITY OR TOWN C. STATE The Woodlands A. STREET, ROUTE NO. OR OTHER SPECIFIC IDENTIFIER A. STREET, ROUTE NO. OR OTHER SPECIFIC IDENTIFIER B. COUNTY NAME B. COUNTY NAME C. STATE A. STREET, ROUTE NO. OR OTHER SPECIFIC IDENTIFIER C. CITY OR TOWN D. STATE C. CITY OR TOWN D. STATE F. ZIP CODE F. COUNTY CODE (If known) Salinas C. CITY OR TOWN D. STATE F. ZIP CODE F. COUNTY CODE (If known) NA PA Form 3510-1 (8-90)	J.FACILTY MAI	ILING ADDRESS							40 49 51 52- 50		MAT But	elitous	
The Woodlands TX 77380 A. STREET, ROUTE NO. OR OTHER SPECIFIC IDENTIFIER A. STREET, ROUTE NO. OR OTHER SPECIFIC IDENTIFIER B. COUNTY NAME B. COUNTY NAME C. CITY OR TOWN C. CITY OR TOWN D. STATE E. ZIP CODE F. COUNTY CODE (if known) Salinas CA Form 3510-1 (8-90)	c 1450 La	ake Robbin				TTT	111111			VALUE OF			
The Woodlands TX 77380 TR FACILITY LOCATION A. STREET, ROUTE NO. OR OTHER SPECIFIC IDENTIFIER TO THE WOOdlands A. STREET, ROUTE NO. OR OTHER SPECIFIC IDENTIFIER B. COUNTY NAME Salinas County (Lat. 17 deg. 54 '14" Long. 66 deg. 13' 49") C. CITY OR TOWN D. STATE E. ZIP CODE F. COUNTY CODE (if known) Salinas PR 00751 NA PR 00751 PR 007			B. CITY OR TOWN				C. STATE	D. ZIP	CODE			-	
A. STREET, ROUTE NO. OR OTHER SPECIFIC IDENTIFIER A. STREET, ROUTE NO. OR OTHER SPECIFIC IDENTIFIER B. COUNTY NAME B. COUNTY NAME C. CITY OR TOWN C. CITY OR TOWN D. STATE E. ZIP CODE F. COUNTY CODE (If known) PR 0 0751 NA PA Form 3510-1 (8-90)	The Woo	odlands '				111	TX 75	1					
B. COUNTY NAME B. COUNTY NAME C. CITY OR TOWN C. CITY OR TOWN D. STATE E. ZIP CODE F. COUNTY CODE (1/f known) PR 00751 NA PA Form 3510-1 (8-90)	/I. FACILITY L	OCATION					40 41 42 47		51				
B. COUNTY NAME Salinas County (Lat. 17 deg. 54 14" Long. 66 deg. 13' 49") C. CITY OR TOWN D. STATE E. ZIP CODE F. COUNTY CODE (If known) PR 00751 NA PA Form 3510-1 (8-90)					CIFIC	IDENTIFIE	R						
B. COUNTY NAME Salinas County (Lat. 17 deg. 54 '14" Long. 66 deg. 13' 49") C. CITY OR TOWN D. STATE E. ZIP CODE F. COUNTY CODE (1/f known) PR 00751 NA PA Form 3510-1 (8-90)	5 3 miles	s Offshore	from Jobos Bay	' '	1 1	1 1 1							
C. CITY OR TOWN D. STATE E. ZIP CODE F. COUNTY CODE (if known) FR 00751 NA PA Form 3510-1 (8-90)	Salinas	County (Lat	B. COUNTY 2.17 deg. 54 14	NAME	ong.	166 de							-
PR 00751 NA NA PA Form 3510-1 (8-90)									CODE F. COLINITY CO.	DE (%)	· lea		
A rolm 3510-1 (8-90)	5 18			1 1	1	1 1 1	PR 00			(1)	KHOWN)	1	
	PA Form 3510-	1 (8-90)					40 41 42 47			-54			

The state of the s

The property of the property o

VII. SIC CODES (4-digit, in order of priority)		
A FIRST		B. SECOND
7 4924	7 4923 (Specific)	
C. THIRD	16 (6 10 Not m e.	Gne Transmission and Distribution
7 4491 (specelis)	7 1321 (specific)	D. FOURTH
VIII. OPERATOR INFORMATION	In its in Natural	Can Liquido
B Excelerate Energy	A. NAME	B. Is the name listed in Item VIII-A also the owner?
15 IO		Z YES O NO
I F E FFIDERAL	appropriate letter into the answer has: if "Other," sp. (specify) NA	- The late time to the
S = STATE M = PUBLIC (other than fee P = PRIVATE O = OTHER (specific)	leral or state) P Specify with	A (832) 813-7629
E. STREET OR P.O	BOX	16 0 - 38 10 - 28 22 - 20
1450 Lake Robbins brive Suite 2	00	
70	65	
F. CITY OR TOWN	G, ST	The state of the s
B The Woodlands	T.	TI TES MINO
X, EXISTING ENVIRONMENTAL PERMITS		
A. NPDES (Discharges to Surface Water)	D. PSD (Air Emissions from Proposed Som	(COLK)
9 N NA	D P PFE-TV-4911-63-0796	-005**
B. UIC (Underground Injection of Fluids)	15 14 17 18	20
9 U NA	E 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	OTHER (specify) (specify)
15 10 17 18 30	9 19A	NA NA
C, RCRA (Hazardons Wastes)	E	OTHER (specify)
9 R NA	9 NA	1 (spec(fy)
15 46 17 18 30 XI. MAP	15 16 17 10	NA 30
Attach to this application a topographic map of the area ex location of each of its existing and proposed intake and disc injects fluids underground. Include all springs, rivers, and other	stending to at least one mile beyond property bo tharge structures, each of its hazardous waste tre	undaries. The map must show the outline of the facility, the selment, storage, or disposal facilities, and each well where it
XII. NATURE OF BUSINESS (provide a brief description)	The man map area, coe man	detroils for precise requirements.
A floating storage regasification unit (Caribbean Sea outside of Jobos Bay. The matural gas carriers (LNGCs) that will mothe Aguirre Power Plant owned by the Puewill be delivered via submarine pipeline* ** PREPA Aguirre Power Plant Air Permit	to the PREPA Aguirre Power Plan	ore GasPort Terminal located in the tural gas (LNG) supplied by liquefied 1-2 weeks depending upon demand from Y (PREPA). The regasified natural gas t.
XIII. CERTIFICATION (see instructions)		
I certify under penalty of law that I have personally examine inquiry of those persons immediately responsible for obtaining am aware that there are significant penalties for submitting fa	d and am familier with the information submitted in ag the information contained in the application, I is ise information, Including the possibility of the	n this application and all attachments and that, based on my policee that the information is true, accurate, and complete. I
A. NAME & OFFICIAL TITLE (type or print)	B. SIGNATURE	ing phisonment.
EDWARD SCOTT, COO	5.10	C. DATE SIGNED
	Jan S	3 July 2013
COMMENTS FOR OFFICIAL USE ONLY		
c	VIIIIIIIIIIII	
15 (18		55
EPA Form 3510-1 (8-90)		

^{----&}gt;Intermittent discharge based on regasification schedule

¹ Water withdrawal and discharge based on closed loop and FRSU vessel readiness operation during regasification

² Ballast water will vary significantly. Value based on Northeast Gateway Projectivith regasification process and on-board storage capacity of the FSRU and may cycle volumes of up to 20,000 m 1/hr.

³ On board gray/black water treatment and disinfection prior to discharge

⁴ Assumes that 2- Main Boilers have maximum volume of 3,100 gallons each and auxillary boiler has maximum volume of 310 gallons

⁵ Assumes a sanitary generation rate of 0.069 MGD for 100 member crew

⁶ Valume of discharge dependent upon daily potable supply and demand needs

⁷ An additional 950 m³/HR for emergency fire control system via emergency sea chest. Maximum withdrawal of 6 MDG only for emergency use. Intermittent routine testing will use estimated 0.05 t.150

Notes:

---->Intermittent discharge based on regasification schedule

¹ Minimum water withdrawal for on demand pressure maintance and service supply will be on routine basis

² Maximum flow based on emergency water supply operational demand .

U.S. Environmental Protection Agency Washington, DC 20460

Application for Permit to Discharge Storm Water Discharges Associated with Industrial Activity

Paperwork Reduction Act Notice

Public reporting burden for this application is estimated to average 28.6 hours per application, including time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding the burden estimate, any other aspect of this collection of information, or suggestions for improving this form, including suggestions which may increase or reduce this burden to: Chief, Information Policy Branch, PM-223, U.S. Environmental Protection Agency, 1200 Pennsylvania Avenue, NW, Washington, DC 20460, or Director, Office of Information and Regulatory Affairs, Office of Management and Budget, Washington, DC 20503.

Outfall Location For each outfall, list the latitude and longitude of its location to the nearest 15 seconds and the name of the receiving water. A. Outfall Number D. Receiving Water (list) B. Latitude C. Longitude (name) PSUR Stormwater 54.00 14.00 66.00 13.00 49.00 Caribbean Sea GasPortStormwater 17.00 54.00 14.00 66.00 13.00 49.00 Caribbean Sea II. Improvements

A. Are you now required by any Federal, State, or local authority to meet any implementation schedule for the construction, upgrading or operation of wastewater treatment equipment or practices or any other environmental programs which may affect the discharges described in this application? This includes, but is not limited to, permit conditions, administrative or enforcement orders, enforcement compliance schedule letters, stipulations, court orders, and grant or loan conditions.

1. Identification of Conditions,		2. Affected Outfalls		4. Final Compliance Date		
Agreements, Etc.	number	source of discharge	Brief Description of Project	a. req.	b. proj.	
NONE	NA NA		NA	d. roq.	D. proj.	
	1 13 1 1 1		1 4 4 4		July 1	
			Water State of the Control of the Co			
					9 5.9	
				1/2/		
			的 - 以			
		PARAMET			- 4	
			The second secon			
			and a way to be a second			
			J CASSING BUILDING	- N (3.65 M)		
	- F7 1 g				- 1	
	9 14		Transfer to			

B: You may attach additional sheets describing any additional water pollution (or other environmental projects which may affect your discharges) you now have under way or which you plan. Indicate whether each program is now under way or planned, and indicate your actual or planned schedules for construction.

III. Site Drainage Map

Attach a site map showing topography (or indicating the outline of drainage areas served by the outfalls(s) covered in the application if a topographic map is unavailable) depicting the facility including: each of its intake and discharge structures; the drainage area of each storm water outfall; paved areas and buildings within the drainage area of each storm water outfall, each known past or present areas used for outdoor storage of disposal of significant materials, each existing structural control measure to reduce pollutants in storm water runoff, materials loading and access areas, areas where pesticides, herbicides, soil conditioners and fertilizers are applied; each of its hazardous waste treatment, storage or disposal units (including each area not required to have a RCRA permit which is used for accumulating hazardous waste under 40 CFR 262.34); each well where fluids from the facility are injected underground; springs, and other surface water bodies which received storm water discharges from the facility.

Figure 2 Jobos Bay Watershed and Drainage Area.

Adapted from PRDNER, undated. Jobos Bay National Estuarine Research Reserve. Management Plan Final 2010-2015 (www.drne.gobierno.pr/.../JobosBayManagementPlanFINALdecember.)

				منادمت
1	Morrofluo	Dan-el-At-	of Pollutant Source	_
	HALLIALIVE	Description	Of Pollutant Cours	

A. For each outfall, provide an estimate of the area (include units) of imperious surfaces (including paved areas and building roofs) drained to the outfall, and an estimate of the total surface area drained by the outfall.

Outlall Number	Number (provide units) Total Area Drained Outlall Area of impervious S (provide units) Number (provide units) Number (provide units)		Area of impervious Surface	Total Area Drained	
Over deck stormwa	Plat Deck area of FSRU approximates 300 m x 50 m	Approx. 15,000 square meters (m2)	Port	Gas Port Deck Area estimated to be 7,300 m2 and Gas Port access walk ways estimated to be 1900 m2.	Approx. 9,200 m2
ter			water		2

B. Provide a narrative description of significant materials that are currently or in the past three years have been treated, stored or disposed in a manner to allow exposure to storm water; method of treatment, storage, or disposal; past and present materials management practices employed to minimize contact by these materials with applied.

The is a proposed facility:

The FSRU will be moored to the Gas Port facility. This will be an operating, moored ship located off the coast of Jobos Bay which will act as a floating storage and regasification unit (FSRU) that will regasify liquidified natural gas (LNG) from LNG carriers for use by the Aguirre Power Station operated by the Puerto Rico Power Authority (PREPA). Operations of this vessel will include the use of machinery requiring lubrication, (oil and grease), hydraulic fluids and similar petroleum based fluids. Routine operation and maintaince of this machinery may result in the incidental/accidental leakage of such fluids onto deck areas. Such leakage will be captured via dip pans and collected and treated accordingly.

The Gas Port platform will be a manned deck platform area supporting diesel Fuel generators and diesel fuel tanks. It will slao support hydraulic oil tanks. Fuel or oil tank units will have associated bunds (with equivalent volume of 120% for spill/leak

C. For each outfall, provide the location and a description of existing structural and nonstructural control measures to reduce pollutents in storm water runoff; and a description of the treatment the storm water receives, including the schedule and type of maintenance for control and treatment measures and the ultimate disposal of any solid or fluid wastes other than by discharge.

Oulfall Number	Treatment	List Codes from
PERUSW	Openings of deck drains/ports will be lined with oil and grease absorbent pigs to filter out oil	Table 2F-1
	have dedicated drip pan installed below which will capture any incidental leakage of oil or grease. These pans wil be inspected regularly. Any accumulated oil or grease will be recovered	1-%
GasPortsW	Diesel fuel and hydraulic oil tanks on Gas Port platform will be common and	1-X

V. Nonstormwater Discharges

A. I certify under penalty of law hat the outfall(s) covered by this application have been tested or evaluated for the presence of nonstormwater discharges, and that all nonstormwater discharged from these outfall(s) are identified in either an accompanying Form 2C or From 2E application for the outfall.

Name and Official Tille (lype or print)

Signature

Signature

Signature

Signature

Signature

Solution 2013

B. Provide a description of the method used, the date of any testing, and the opene drainage points that were directly observed during a test.

Proposed operation - No Data Aveilable

VI. Significant Leaks or Spills

Provide existing information regarding the history of significant leaks or spills of toxic or hazardous pollutants at the facility in the last three years, including the approximate date and location of the spill or leak, and the type and amount of material released.

No data available. This is a proposed facility.

Continued from Page 2	EPA ID Number (copy from lien	1 1 of Form 1)	
VII. Discharge Information	· · · · · · · · · · · · · · · · · · ·		
A, B, C, & D: See instructions before proceeding.	Complete one set of tables for each outfal d on separate sheets numbers VII-1 and V		e provided.
Potential discharges not covered by analysis - currently use or manufacture as an intermediate	is any toxic pollutant listed in table 2F-3 or final product or byproduct?	2, 2F-3, or 2F-4, a substance or a com	ponent of a substance which you
Yes (list all such pollulants below)		No (go to Section IX)	
A CONTRACTOR OF THE PROPERTY O		A SET OF STATE OF STA	
VIII. Biological Toxicity Testing Data			
Do you have any knowledge or reason to believe th relation to your discharge within the last 3 years? Yes (list all such pollulants below)	al any biological leat for acute or chronic	oxicily has been made on any of your dis	scharges or on a receiving water in
IX. Contract Analysis Information Were any of the analyses reported in Item VII performance.			
Yes (list the name, address, and telep analyzed by, each such laborator		✓ No (go to Section X)	
A. Name	B. Address	C. Area Code & Phone No.	D. Poliutants Analyzed
		affecting and	
		AND STATE OF THE S	
X. Certification			
I certify under penelty of law that this document en that qualified personnel properly gather and evalue directly responsible for gathering the information, there are significant penelties for submitting false in	te the information submitted. Based on m the information submitted is, to the best	y inquiry of the person or persons who m of my knowledge and belief, true, accura	anage the system or those nersons
A. Name & Official Title (Type Or Print)		B. Area Code and Phone No.	7
EDWARD SCOTT, COO		832-813-7100	,
C. Signature		D. Date Signed 3 July 2013	

EPA Form 3510-2F (1-92)

Page 3 of 3

VII. Discharge information (Continued from page 3 of Form 2F)

Part A - You must provide the results of at least one analysis for every pollutant in this table. Complete one table for each outfall. See instructions for additional details

Pollutant and CAS Number (if available)	(inc	mum Values lude units)	Ave	erage Values	Number	duran. See instructions for additional details.
	Grab Sample Taken During First 20 Minutes	Flow-Weighted Composite	Grab Sample Taken During First 20 Minutes	Flow-Weighted Composite	of Storm Events Sampled	Sources of Pollutants
Oil and Grease	NA	N/A	NA	NA	0.00	NA
Biological Oxygen Demand (BOD5)	NA	NA	NA .	NA	0.00	NA
Chemical Oxygen Demand (COD)	NA	NA	NA	NA	0.00	NA
Total Suspended Solids (TSS)	NA	NA	NA	NA	0.00	NA
Total Nitrogen	NA	АИ	NA	NA	0.00	NA
Total Phosphorus	NA	NA	NA	NA	0.00	NA
рН	Minimum	Maximum	Minimum	Maximum	0.00	NA NA

Part B – List each pollutant that is limited in an effluent guideline which the facility is subject to or any pollutant listed in the facility's NPDES permit for its process wastewater (if the facility is operating under an existing NPDES permit). Complete one table for each outfall. See the instructions for additional details and requirements.

Maximum Values (include units)		mum Values elude units)	Av.	erage Values nclude units)	Number		Ī
Pollutant and CAS Number (if available)	Grab Sample Taken During First 20 Minutes	Flow-Weighted Composite	Grab Sample Taken During First 20 Minutes	Flow-Weighted Composite	of Storm Events Sampled	Sources of Pollutants	
IA .	NA	NA	NA	NA	0.00	NA	I
			7				
		1 1 1 1					
							-
							-
							_
					 		
						Part - Pearly Industry to some	
		(A)	W				
	j gardish tis	russii atmostaja dajai	NAME ARREST TO TRACK		- L	- 18 3	
A. Through part	50 eC				no e point	Total modern 1 model	
Interestinated in the	80 6 (jr - 10)	Appealer of the second	of Sill Street, such	(2.11)	OF (4)	(496 M (46 A) - 1 - 10 M (47 A)	-
	10%	(98.)		(A)		Sil 881 89	-
	1						
	 			-			
			*				
	1					Academic and the academic of the control of the con	
	1 1						
la l							-
				7			_
			-				
	-			1 3 7			
	-						

Part C - Lis	t each pollutant show uirements. Complete	wn in Table 2F-2, 2F-3 e one table for each ou	, and 2F-4 that your fall.	ou know or have reason to	o believe	is present	. See the instruction	ons for additional details and
		um Values de units)	Ave (in	erage Values aclude units)		mber		Page
Pollutant and CAS Number (if available)	Grab Sample Taken During First 20 Minutes	Flow-Weighted Composite	Grab Sample Taken During First 20 Minutes	Flow-Weighted Composite	St	of orim ents npled	Sour	ces of Pollutants
NΛ	NV	NA	NA	NA	0.00		AA	
						-		
				- 1				
								•
		-,						
							27 W	
								14.
				a Vie	1	- 1	Capta - I	
		William I						
					+			
	s to a like	Obstruct				-		
		(4) (4)		-	-			
	ļ			-	-			
			 	-	-			
					_			
					_			
		1	-					
		term event(s) which re	culted in the may	imum values for the flow	weighted	composite	sample.	
Part D - P	Tovide data for the s	lioni event(s) which re	Suited III tillo III ax	4.			5.	
1.	2.	• 3.		Number of hours be	tween	Maximur	n flow rate during	6.
Date of	Duration of Storm Event	Total ra	ainfall rm event	beginning of storm me and end of previo	easured ous		ain event ons/minute or	Total flow from rain event
Storm Event	(in minutes)	(in inc	thes)	measurable rain e	event	sp	ecify units)	(gallons or specify units)
NA	NA ·	NA		NA		NA		NA .
nee!								
		-						
						L		
7. Provide	a description of the	method of flow measur	ement or estimat	e.				
NA								

EPA I.D. NUMBER (copy from Item 1 of Form 1)

Please print or type in the unshaded areas only

Porm 2D NPDES

New Sources and New Dischargers Application for Permit to Discharge Process Wastewater

I. Outfall Location

For each outfall, list the latitude and longitude of its location to the nearest 15 seconds and the name of the receiving water.

Outfall Number	Latitude				Longitude		Receiving Water (name)
(list)	Deg.	Min.	Sec.	Deg.	Min.	Sec.	Lines I mist Load Sten Lines L
001A/B	17.00	54.00	14.00	66.00	13.00	49.00	Caribbean Sea - Lat. and Long. of Floating Storage and Regasification Unit (FSRU)
002A/B	17.00	54.00	14.00	66.00	13.00	49.00	Caribbean Sea - Lat. and Long. of Floating Storage and Regasification Unit (FSRU)
003A/B	17.00	54.00	14.00	66.00	13.00	49.00	Caribbean Sea - Lat. and Long. of Floating Storage and Regasification Unit (FSRU)
004 A/B	17.00	54.00	14.00	66.00	13.00	49.00	Caribbean Sea - Lat. and Long. of Floating Storage and Regasification Unit (FSRU)
005 A/B	17.00	54.00	14.00	66.00	13.00	49.00	Caribbean Sea - Lat. and Long. of Ploating Storage and Regasification Unit (FSRU)

II. Discharge Date (When do you expect to begin discharging?)

06/30/2015

III. Flows, Sources of Pollution, and Treatment Technologies

A. For each outfall, provide a description of: (1) All operations contributing wastewater to the effluent, including process wastewater, sanitary wastewater, cooling water, and storm water runoff; (2) The average flow contributed by each operation; and (3) The treatment received by the wastewater. Continue on additional sheets if necessary.

Outfall Number	Operations Contributing Flow (<i>List</i>)	2. Average Flow (Include Units)	3. Treatment (Description or List codes from Table 2D-1,
001A/B	Main Condenser Cooling Water	47 million gal.per day (MGD)	5-F Chlorine treatment, 4-B Discharge to Ocean
002A/B	Auxillary Cooling Water	6.0 MGD	5-F Chlorine treatment, 4-B Discharge to Ocean
003A/B	Water Safety Curtain	0.6 MGD	5-F Chlorine treatment, 4-B Discharge to Ocean
004A/B	Brine from FW Generator	0.27 MGD	5-F Chlorine treatment, 4-B Discharge to Ocean
005A/B	Sanitary and Hoteling	0.069 MGD	5-F Chlorine treatment, 4-B Discharge to Ocean
	(Outfall Description	Page 1 of 2)	impag0:[islio0)
3.7			
			4.24

EPA I.D. NUMBER (copy from Item 1 of Form 1)

Please print or type in the unshaded areas only

2D SEPA

New Sources and New Dischargers Application for Permit to Discharge Process Wastewater

I. Outfall Location

For each outfall, list the latitude and longitude of its location to the nearest 15 seconds and the name of the receiving water.

Outfall Number		Latitude			Longitude		Receiving Water (name)	
(list)	Deg.	Min.	Sec.	Deg.	Min.	Sec.		
006A/B	17.00	54.00	14.00	66.00	13.00	49.00	Caribbean Sea - Lat. and Long. of Floating Storage and Regasification Unit (FSRU)	
007	17.00	54.00	14.00	66.00	13.00	49.00	Caribbean Sea - Lat. and Long. of Floating Storage and Regasification Unit (FSRU)	
800	17.00	54.00	14.00	66.00	13.00	49.00	Caribbean Sea - Lat. and Long of Gas Port Platform Structure	
009A/B	17.00	54.00	14.00	66.00	13.00	49.00	Caribbean Sea - Lat. and Long of Gas Port Platform Structure	
010 Hydrstatic Test Water	17.00	57.00	48.00	66.00	13.00	37.00	Jobos Bay - Lat. and Long. of test water discharge	

II. Discharge Date (When do you expect to begin discharging?).

06/30/2015

III. Flows, Sources of Pollution, and Treatment Technologies

A. For each outfall, provide a description of: (1) All operations contributing wastewater to the effluent, including process wastewater, sanitary wastewater, cooling water, and storm water runoff; (2) The average flow contributed by each operation; and (3) The treatment received by the wastewater. Continue on additional sheets if necessary.

Outfall Number	Operations Contributing Flow (<i>List</i>)	2. Average Flow (Include Units)	3. Treatment (Description or List codes from Table 2D-1)
006A/B	FSRU Ballast system	1.9 MGD	5-F Chlorine treatment, 4-B Discharge to Ocean
007	FSRU Fire Control Test Water	0.06 MGD	5-F Chlorine treatment, 4-B Discharge to Ocean
008	Gas Port Fire Test Water	0.095 MGD	5-F Chlorine treatment, 4-B Discharge to Ocean
009A/B	Port/Star. Safety Curtain	1.2 MGD	5-F Chlorine treatment, 4-B Discharg to Ocean
010	Hydrostatic Test Water	0.24 MGD	4-B Discharge to Ocean
	(Outfall Description	Page 2 of 2)	g'paro . Deb.
×	4.		
			F -

by showing	ne drawing showing the id treatment units labeled average flows between vities), provide a pictorial	intakes operations t	reatmen	at units, and outfalls	If a water belower	ct a water balance of	on the line drawing
C. Except for s	storm runoff, leaks, or sp ES (complete the following	ills, will any of the disc	charges	described in Items II	I-A be intermittent or	seasonal?	ent measures.
			1. Fre	quency	,	2. Flow	I NO SERVICE
	Outfall Number ·	a. Da Per W (specify av	ys eek	b. Months Per Year (specify average)	a. Maximum Daily Flow Rate	b. Maximum Total Volume	c. Duration
		(Specify at	verage)	(specify average)	(in mgd)	(specify with units)	(in days)
	J Water Safety Cu		wk.	12 mon./Yr.	0.6 MGD	73 million gallons (MG)	122 days
007 FSRU Water	J Fire Control Te	est 1 day/w	k.	12 mon./Yr.	0.06 MGD	3.2 MG	52 days
008 GasPo Water	ort Fire Control	Test 1 days/	wk.	12 mon./Yr.	0.095 MGD	4.9 MG	52 days
009A/B G Curtains	SasPort Water Saf	ety 3 day/w	k.	12 mon./Yr.	1.2 MGD	146 MG	122 days
010 Hydrost (*One time continuing	atic Test Water* test period and discharge)	not -*		-*	0.24 MGD*	0.72 MG*	3 days*
	e displacement	roo ès basela.		- Pare	VEL C	Type 127 of	Start Start
	r some religion	and \$5 beet-1.5		ac .	uns fage	ention magn	Total Eug
	o resolve redike	mer der buker von		rac, cr	655.81	tysiika	152 (page
		CERT NR COL PROT		**			(GDR) vd.(4
		as de Roma e c		6.12	0.24	(test)	elacess u
		no du ficello d			- 41	(yab lebarat)	Account-10
		le ix it eextups?		6.65		a), (amonth) a	uldere gest
		pahalar sestupat		1, 5.42	15.4	ol-Commont w	man kimpt
		madnick squit		83 5 5 1 8.1	63.6.8		(04.) 502
	m months topin	no di sentra i		Eist	20.0	(mgg) entroll	Semi-dunit
IV. Production	s tossilni ambies	up de lasti-a.c		94	19 89 1 tx	sp/spw.nd/, eq	20102,863
If there is an a	applicable production-ba el, not design), expresse oduction is likely to vary,	eu in the terms and u	nits use	d in the applicable e	affluent quideline or	vel of production (pr NSPS, for each of the	rojection of actual ne first 3 years of
Year	A. Quantity Per Day	B. Units Of Measure			eration, Product, Ma	terial, etc. (specify)	
0.00	0.00	0	NA				
0.00	0.00	0	NA				
0.00	0.00	0	NA				
EPA Form 3510-2	2D (Rev. 8-90)		Pa	age 2 of 5		CONT	INUE ON NEXT PAG

PA LD. NUMBER (copy from Item 1 of Form 1)
7

Outfall Number 001A/B

V. Effluent Characteristics

A and B: These items require you to report estimated amounts (both concentration and mass) of the pollutants to be discharged from each of your outfalls. Each part of this item addresses a different set of pollutants and should be completed in accordance with the specific instructions for that part. Data for each outfall should be on a separate page. Attach additional sheets of paper if necessary.

General Instructions (See table 2D-2 for Pollutants)

Each part of this item requests you to provide an estimated daily maximum and average for certain pollutants and the source of information. Data for all pollutants in Group A, for all outfalls, must be submitted unless waived by the permitting authority. For all outfalls, data for pollutants in Group B should be reported only for pollutants which you believe will be present or are limited directly by an effluent limitations guideline or NSPS or indirectly through limitations on an indicator pollutant.

1. Pollutant	2. Maximum Daily Value (include units)	3. Average Daily Value (include units)	4. Source (see instructions)
Bio.Oxygen Demand (ppm)	45	30	3,4-Need to consider influent concentration
BOD (pounds/day)	17651	11767	3,4-Need to consider influent concentration
Chemical Oxygen Demand(ppm)	265	141.5	3,4-Need to consider influent concentration
COD (pounds/day)	103,942	55,501	3,4-Need to consider influent concentration
Total Organic Carbon (ppm)	2.9	2.0	3,4-Need to consider influent concentration
TOC (pounds/day)	1,137	784	3,4-Need to consider influent concentration
Total Suspended Solids(ppm)	100	30	3,4-Need to consider influent concentration
TSS (pounds/day)	39,223	11,767	3,4-Need to consider influent concentration
Flow (MGD)	47	47	FSRU Water Balance
N-Ammonia (ppm)	0.24	0.12	3,4-Need to consider influent concentration
N-Ammonia (pounds/day)	94	47	3,4-Need to consider influent concentration
Temperature (Winter) (oC)	38.2	38.2	Requires mixing zone application
Temperature (Summer) (oC)	44.2	44.2	Requires mixing zone application
pH (su)	7.3 to 8.5	7.3 to 8.5	PREQB Standard
ResidualChlorine (ppm)	0.15	0.13	3,4-Need to considerinfluent concentration
Res.Chlorine (pounds/day)	59	49	3,4-Need to consider influent concentration
		1. 1453[27]	THE STATE OF THE S
10.00	d euro m eujit a est La eta acpte trebio	Control / Links of	e normalise de la
To Months, all a	- La street		

Outfall Number 002A/B

V. Effluent Characteristics

A and B: These items require you to report estimated amounts (both concentration and mass) of the pollutants to be discharged from each of your outfalls. Each part of this item addresses a different set of pollutants and should be completed in accordance with the specific instructions for that part. Data for each outfall should be on a separate page. Attach additional sheets of paper if necessary.

General Instructions (See table 2D-2 for Pollutants)

Each part of this item requests you to provide an estimated daily maximum and average for certain pollutants and the source of information. Data for all pollutants in Group A, for all outfalls, must be submitted unless waived by the permitting authority. For all outfalls, data for pollutants in Group B should be reported only for pollutants which you believe will be present or are limited directly by an effluent limitations guideline or NSPS or indirectly through limitations on an indicator pollutant.

1. Pollutant	2. Maximum Daily Value (include units)	3. Average Daily Value (include units)	. 4. Source (see instructions)
Bio.Oxygen Demand (ppm)	45	30	3,4-Need to consider influent concentration
BOD (pounds/day)	2,250	1,500	3,4-Need to consider influent concentration
Chemical Oxygen Demand(ppm)	265	141.5	3,4-Need to consider influent concentration
COD (pounds/day)	13,250	7,075	3,4-Need to consider influent concentration
Total Organic Carbon (ppm)	2.9	2.0	3,4-Need to consider influent concentration
TOC (pounds/day)	145	100	3,4-Need to consider influent concentration
Total Suspended Solids(ppm)	100	30	3,4-Need to consider influent concentration
TSS (pounds/day)	5,000	1,500	3,4-Need to consider influent concentration
Flow (MGD)	6	6	FSRU Water Balance
N-Ammonia (ppm)	0.24	0.12	3,4-Need to consider influent concentration
N-Ammonia (pounds/day)	12	6	3,4-Need to consider influent concentration
Temperature (Winter) (oC)	35.2	35.2	Requires mixing zone application
Temperature (Summer) (oC)	35.2	35.2	Requires mixing zone application
pH (su)	7.3 to 8.5	7.3 to 8.5	PREQB Standard
ResidualChlorine (ppm)	0.15	0.13	3,4-Need to considerinfluent concentration
Res.Chlorine (pounds/day)	8	6	3,4-Need to consider influent concentration
- hiterany			
4 - 4			
×			
	No.		

A and B: These items require you to report estimated amounts (both concentration and mass) of the pollutants to be discharged from each of your outfalls. Each part of this item addresses a different set of pollutants and should be completed in accordance with the specific instructions for that part. Data for each outfall should be on a separate page. Attach additional sheets of paper if necessary.

General Instructions (See table 2D-2 for Pollutants)

Each part of this item requests you to provide an estimated daily maximum and average for certain pollutants and the source of information. Data for all pollutants in Group A, for all outfalls, must be submitted unless waived by the permitting authority. For all outfalls, data for pollutants in Group B should be reported only for pollutants which you believe will be present or are limited directly by an effluent limitations guideline or NSPS or

1. Pollutant	2. Maximum Daily Value - (include units)	3. Average Daily Value (include units)	4. Source (see instructions)
Bio.Oxygen Demand (ppm)	45	30	3,4-Need to consider influent concentration
BOD (pounds/day)	. 225	150	3,4-Need to consider influent concentration
Chemical Oxygen Demand(ppm)	265	141.5	3,4-Need to consider influent concentration
COD(pounds/day)	1325	708	3,4-Need to consider influent concentration
Total Organic Carbon (ppm)	2.9	2.0	3,4-Need to consider influent concentration
TOC (pounds/day)	15	10	3,4-Need to consider influent concentration
Total Suspended Solids(ppm)	100	30	3,4-Need to consider influent concentration
TSS (pounds/day)	500	150	3,4-Need to consider influent concentration
Flow (MGD)	0.6	0.6	FSRU Water Balance
N-Ammonia (ppm)	0.24	0.12	3,4-Need to consider influent concentration
N-Ammonia (pounds/day)	1.2	0.6	3,4-Need to consider influent concentration
Temperature (Winter) (oC)	32.2	32.2	PREQB Standard or ambient
Temperature (Summer) (oC)	32.2	32.2	PREQB Standard or ambient
pH (su)	7.3 to 8.5	7.3 to 8.5	PREQB Standard
ResidualChlorine (ppm)	0.15	0.13	3,4-Need to considerinfluent concentration
Res.Chlorine (pounds/day)	0.8	0.6	3,4-Need to consider influent concentration

CONTINUED FROM THE FRONT EPA I.D. NUI	MBER (copy from Item 1 of Form 1)	Outfall Number	
. B. Actio		004A/B	

A and B: These items require you to report estimated amounts (both concentration and mass) of the pollutants to be discharged from each of your outfalls. Each part of this item addresses a different set of pollutants and should be completed in accordance with the specific instructions for that part. Data for each outfall should be on a separate page. Attach additional sheets of paper if necessary.

General Instructions (See table 2D-2 for Pollutants)

Each part of this item requests you to provide an estimated daily maximum and average for certain pollutants and the source of information. Data for all pollutants in Group A, for all outfalls, must be submitted unless waived by the permitting authority. For all outfalls, data for pollutants in Group B should be reported only for pollutants which you believe will be present or are limited directly by an effluent limitations guideline or NSPS or indirectly through limitations on an indicator pollutant.

1. Pollutant	2. Maximum Daily Value (include units)	3. Average Daily Value (include units)	4. Source (see instructions)
Bio.Oxygen Demand (ppm)	45	30	3,4-Need to consider influent concentration
BOD (pounds/day)	101	68	3,4-Need to consider influent concentration
Chemical Oxygen Demand(ppm)	265	141.5	3,4-Need to consider influent concentration
COD(pounds/day)	596	318	3,4-Need to consider influent concentration
Total Organic Carbon (ppm)	2.9	2.0	3,4-Need to consider influent concentration
TOC (pounds/day)	6.5	4.5	3,4-Need to consider influent concentration
Total Suspended Solids(ppm)	100	30	3,4-Need to consider influent concentration
TSS (pounds/day)	225	68	3,4-Need to consider influent concentration
Flow (MGD)	0.27	0.27	FSRU Water Balance
N-Ammonia (ppm)	0.24	0.12	3,4-Need to consider influent concentration
N-Ammonia (pounds/day)	0.54	0.27	3,4-Need to consider influent concentration
Temperature (Winter) (oC)	32.2	32.2	PREQB Standard or ambient
Temperature (Summer) (oC)	32.2	32.2	PREQB Standard or ambient
pH (su)	7.3 to 8.5	7.3 to 8.5	PREQB Standard
ResidualChlorine (ppm)	0.15	0.13	3,4-Need to considerinfluent concentration
Res.Chlorine (pounds/day)	0.34	0.28	3,4-Need to consider influent concentration
distriction to the police	ou baek-1.0	<20t-	(653.1 Copfie (MON 2.05 et.) 100
1			
EPA Form 3510-2D (Rev. 8-90)		Page 3 of 5	

CONTINUED FROM THE FRONT	EPA I.D. NUMBER (copy from Item 1 of Form 1)	Outfall Numb
		005A/B

A and B: These items require you to report estimated amounts (both concentration and mass) of the pollutants to be discharged from each of your outfalls. Each part of this item addresses a different set of pollutants and should be completed in accordance with the specific instructions for that part. Data for each outfall should be on a separate page. Attach additional sheets of paper if necessary.

General Instructions (See table 2D-2 for Pollutants)

Each part of this item requests you to provide an estimated daily maximum and average for certain pollutants and the source of information. Data for all pollutants in Group A, for all outfalls, must be submitted unless waived by the permitting authority. For all outfalls, data for pollutants in Group B should be reported only for pollutants which you believe will be present or are limited directly by an effluent limitations guideline or NSPS or indirectly through limitations on an indicator pollutant.

1. Pollutant	2. Maximum Daily Value (include units)	Average Daily Value (include units)	4. Source (see instructions)
Bio.Oxygen Demand (ppm)	45	30	3,4-Need to consider influent concentration
BOD (pounds/day)	26	17.3	3,4-Need to consider influent concentration
Chemical Oxygen Demand(ppm)	265	141.5	3,4-Need to consider influent concentration
COD (pounds/day)	153.4	81.4	3,4-Need to consider influent concentration
Total Organic Carbon (ppm)	2.9	2.0	3,4-Need to consider influent concentration
TOC (pounds/day)	1.7	1.2	3,4-Need to consider influent concentration
Total Suspended Solids(ppm)	100	30	3,4-Need to consider influent concentration
TSS (pounds/day)	58	17.3	3,4-Need to consider influent concentration
Flow (MGD)	0.069	0.069	FSRU Water Balance
N-Ammonia (ppm)	0.24	0.12	3,4-Need to consider influent concentration
N-Ammonia (pounds/day)	0.14	0.07	3,4-Need to consider influent concentration
Temperature (Winter) (oC)	32.2	32.2	PREQB Standard or ambient
Temperature (Summer) (oC)	32.2	32.2	PREQB Standard or ambient
pH (su)	7.3 to 8.5	7.3 to 8.5	PREQB Standard
ResidualChlorine (ppm)	0.15	0.13	3,4-Need to considerinfluent concentration
Res.Chlorine (pounds/day)	0.09	0.07	3,4-Need to consider influent concentration
Coliforms (MPN/100 mL)	200	<200	3,4-Need to consider influent concentration

Page 3 of 5

CONTINUED FROM THE FRONT	EPA I.D. NUMBER (copy from Item 1 of Form 1)	Outfall Number	
		006A/B	

A and B: These items require you to report estimated amounts (both concentration and mass) of the pollutants to be discharged from each of your outfalls. Each part of this item addresses a different set of pollutants and should be completed in accordance with the specific instructions for that part. Data for each outfall should be on a separate page. Attach additional sheets of paper if necessary.

General Instructions (See table 2D-2 for Pollutants)

Each part of this item requests you to provide an estimated daily maximum and average for certain pollutants and the source of information. Data for all pollutants in Group A, for all outfalls, must be submitted unless waived by the permitting authority. For all outfalls, data for pollutants in Group B should be reported only for pollutants which you believe will be present or are limited directly by an effluent limitations guideline or NSPS or indirectly through limitations on an indicator pollutant.

1. Pollutant	2. Maximum Daily Value (include units)	3. Average Daily Value (include units)	4. Source (see instructions)
Bio.Oxygen Demand (ppm)	45	30	3,4-Need to consider influent concentration
BOD (pounds/day)	713	475	3,4-Need to consider influent concentration
Chemical Oxygen Demand(ppm)	265	141.5	3,4-Need to consider influent concentration
COD(pounds/day)	4,195	2,240	3,4-Need to consider influent concentration
Total Organic Carbon (ppm)	2.9	2.0	3,4-Need to consider influent concentration
TOC (pounds/day)	46	32	3,4-Need to consider influent concentration
Total Suspended Solids(ppm)	100	30	3,4-Need to consider influent concentration
TSS (pounds/day)	1,584	475	3,4-Need to consider influent concentration
Flow (MGD)	1.9	1.9	FSRU Water Balance
N-Ammonia (ppm)	0.24	0.12	3,4-Need to consider influent concentration
N-Ammonia (pounds/day)	3.8	1.9	3,4-Need to consider influent concentration
Temperature (Winter) (oC)	32.2	32.2	PREQB Standard or ambient
Temperature (Summer) (oC)	32.2	32.2	PREQB Standard or ambient
pH (su)	7.3 to 8.5	7.3 to 8.5	PREQB Standard
ResidualChlorine (ppm)	0.15	0.13	3,4-Need to considerinfluent concentration
Res.Chlorine (pounds/day)	2.4	2.0	3,4-Need to consider influent concentration
EPA Form 3510-2D (Rev. 8-90)			

A and B: These items require you to report estimated amounts (both concentration and mass) of the pollutants to be discharged from each of your outfalls. Each part of this item addresses a different set of pollutants and should be completed in accordance with the specific instructions for that part. Data for each outfall should be on a separate page. Attach additional sheets of paper if necessary

General Instructions (See table 2D-2 for Pollutants)

Each part of this item requests you to provide an estimated daily maximum and average for certain pollutants and the source of information. Data for all pollutants in Group A, for all outfalls, must be submitted unless waived by the permitting authority. For all outfalls, data for pollutants in Group B should be reported only for pollutants which you believe will be present or are limited directly by an effluent limitations guideline or NSPS or

1. Pollutant	2. Maximum Daily Value (include units)	3. Average Daily Value (include units)	4. Source (see instructions)		
Bio.Oxygen Demand (ppm)	45	30	3,4-Need to consider influent concentration		
BOD (pounds/day)	23	15	3,4-Need to consider influent concentration		
Chemical Oxygen Demand(ppm)	265	141.5	3,4-Need to consider influent concentration		
COD (pounds/day)	133	71	3,4-Need to consider influent concentration		
Total Organic Carbon (ppm)	2.9	2.0	3,4-Need to consider influent concentration		
TOC (pounds/day)	1.5	1.0	3,4-Need to consider influent concentration		
Total Suspended Solids(ppm)	100	30	3,4-Need to consider influent concentration		
TSS (pounds/day)	50	15	3,4-Need to consider influent concentration		
Flow (MGD)	0.06	0.06	FSRU Water Balance		
N-Ammonia (ppm)	0.24	0.12	3,4-Need to consider influent concentration		
N-Ammonia (pounds/day)	0.12	0.06	3,4-Need to consider influent concentration		
Temperature (Winter) (oC)	32.2	32.2	PREQB Standard or ambient		
Temperature (Summer) (oC)	32.2	32.2	PREQB Standard or ambient		
pH (su)	7.3 to 8.5	7.3 to 8.5	PREQB Standard		
ResidualChlorine (ppm)	0.15	0.13	3,4-Need to considerinfluent concentration		
Res.Chlorine (pounds/day)	0.08	0.06	3,4-Need to consider influent concentration		

Outfall Number 008

V. Effluent Characteristics

A and B: These items require you to report estimated amounts (both concentration and mass) of the pollutants to be discharged from each of your outfalls. Each part of this item addresses a different set of pollutants and should be completed in accordance with the specific instructions for that part. Data for each outfall should be on a separate page. Attach additional sheets of paper if necessary.

General Instructions (See table 2D-2 for Pollutants)

Each part of this item requests you to provide an estimated daily maximum and average for certain pollutants and the source of information. Data for all pollutants in Group A, for all outfalls, must be submitted unless waived by the permitting authority. For all outfalls, data for pollutants in Group B should be reported only for pollutants which you believe will be present or are limited directly by an effluent limitations guideline or NSPS or indirectly through limitations on an indicator pollutant.

1. Pollutant	2. Maximum Daily Value (include units)	3. Average Daily Value (include units)	4. Source (see instructions)
Bio.Oxygen Demand (ppm)	45	30	3,4-Need to consider influent concentration
BOD (pounds/day)	36	24	3,4-Need to consider influent concentration
Chemical Oxygen Demand(ppm)	265	141.5	3,4-Need to consider influent concentration
COD (pounds/day)	210	112	3,4-Need to consider influent concentration
Total Organic Carbon (ppm)	2.9	2.0	3,4-Need to consider influent concentration
TOC (pounds/day)	2.3	1.6	3,4-Need to consider influent concentration
Total Suspended Solids(ppm)	100	30	3,4-Need to consider influent concentration
TSS (pounds/day)	80	24	3,4-Need to consider influent concentration
Flow (MGD)	0.095	0.095	Gas Port Water Balance
N-Ammonia (ppm)	0.24	0.12	3,4-Need to consider influent concentration
N-Ammonia (pounds/day)	0.19	0.10	3,4-Need to consider influent concentration
Temperature (Winter) (oC)	32.2	32.2	PREQB Standard or ambient
Temperature (Summer) (oC)	32.2	32.2	PREQB Standard or ambient
pH (su)	7.3 to 8.5	7.3 to 8.5	PREQB Standard
ResidualChlorine (ppm)	0.15	0.13	3,4-Need to considerinfluent concentration
Res.Chlorine (pounds/day)	0.12	0.10	3,4-Need to consider influent concentration

A and B: These items require you to report estimated amounts (both concentration and mass) of the pollutants to be discharged from each of your outfalls. Each part of this item addresses a different set of pollutants and should be completed in accordance with the specific instructions for that part. Data for each outfall should be on a separate page. Attach additional sheets of paper if necessary.

General Instructions (See table 2D-2 for Pollutants)

Each part of this item requests you to provide an estimated daily maximum and average for certain pollutants and the source of information. Data for all pollutants in Group A, for all outfalls, must be submitted unless waived by the permitting authority. For all outfalls, data for pollutants in Group B should be reported only for pollutants which you believe will be present or are limited directly by an effluent limitations guideline or NSPS or

indirectly through limitations on an indicat	or pollutant.		136.0		
1. Pollutant 2. Maximum Daily Value (include units)		3. Average Daily Value (include units)	4. Source (see instructions)		
Bio.Oxygen Demand (ppm)	45	30	3,4-Need to consider influent concentration		
BOD (pounds/day)	450	300	3,4-Need to consider influent concentration		
Chemical Oxygen Demand(ppm)	265	141.5	3,4-Need to consider influent concentration		
COD(pounds/day)	2,650	1,415	3,4-Need to consider influent concentration		
Total Organic Carbon (ppm)	2.9	2.0	3,4-Need to consider influent concentration		
TOC (pounds/day)	29	20	3,4-Need to consider influent concentration		
Total Suspended Solids(ppm)	100	30	3,4-Need to consider influent concentration		
TSS (pounds/day)	1,000	300	3,4-Need to consider influent concentration		
Flow (MGD)	1.2	1.2	Gas Port Water Balance		
N-Ammonia (ppm)	0.24	0.12	3,4-Need to consider influent concentration		
N-Ammonia (pounds/day)	2.4	1.2	3,4-Need to consider influent concentration		
Temperature (Winter) (oC)	32.2	32.2	PREQB Standard or ambient		
Temperature (Summer) (oC)	32.2	32.2	PREQB Standard or ambient		
pH (su)	7.3 to 8.5	7.3 to 8.5	PREQB Standard		
ResidualChlorine (ppm)	0.15	0.13	3,4-Need to considerinfluent concentration		
Res.Chlorine (pounds/day)	1.5	1.3	3,4-Need to consider influent concentration		
1 1 1 1					
·					

CONTINUED FROM THE FRONT	EPA I.D. NUMBER (copy from Item 1 of Form 1)	Outfall Number
Cdanieri	A STATE OF THE PARTY OF THE PAR	010

A and B: These items require you to report estimated amounts (both concentration and mass) of the pollutants to be discharged from each of your outfalls. Each part of this item addresses a different set of pollutants and should be completed in accordance with the specific instructions for that part. Data for each outfall should be on a separate page. Attach additional sheets of paper if necessary.

General Instructions (See table 2D-2 for Pollutants)

Each part of this item requests you to provide an estimated daily maximum and average for certain pollutants and the source of information. Data for all pollutants in Group A, for all outfalls, must be submitted unless waived by the permitting authority. For all outfalls, data for pollutants in Group B should be reported only for pollutants which you believe will be present or are limited directly by an effluent limitations guideline or NSPS or indirectly through limitations on an indicator pollutant.

1. Pollutant	2. Maximum Daily Value (include units)	3. Average Daily Value (include units)	4. Source (see instructions)
O.Oxygen Demand (ppm)	45	30	3,4-Need to consider influent concentration
(pounds/day)	90	60	3,4-Need to consider influent concentration
mical Oxygen Demand(ppm)	265	141.5	3,4-Need to consider influent concentration
(pounds/day)	530	283	3,4-Need to consider influent concentration
al Organic Carbon (ppm)	2.9	2.0	3,4-Need to consider influent concentration
(pounds/day)	5.8	4.0	3,4-Need to consider influent concentration
al Suspended Solids(ppm)	100	30	3,4-Need to consider influent concentration
(pounds/day)	200	60	3,4-Need to consider influent concentration
w (MGD)	0.24	0.24	Est. Hydrostatic Water Need/Test
mmonia (ppm)	0.24	0.12	3,4-Need to consider influent concentration
mmonia (pounds/day)	0.48	0.24	3,4-Need to consider influent concentration
perature (Winter) (oC)	32.2	32.2	PREQB Standard or ambient
perature (Summer) (oC)	32.2	32.2	PREQB Standard or ambient
(su)	7.3 to 8.5	7.3 to 8.5	PREQB Standard
idualChlorine (ppm)	antigography wor	c) no report.	No chlorine treatment applied
.Chlorine (pounds/day)	- 100	-	No chlorine treatment applied
We resented to be	zleronotya t	olim &Elameco	Morrhagat Galeway Indexpy
			249.720de
		Postco Rico	Cantina Name Tatwist Profiles (Salina)
Ja			
] · · · · · · · · · · · · · · · · · · ·		
Form 3510-2D (Rev. 8-90)	1 3. 1 3.	Page 2 of 5	

CONTINUED FROM THE FRONT	EPA I.D. NUMBER (copy from Item 1 of Form 1)	The second secon
discharged from any outfall. For every po	pollutants listed in Table 2D-3 of the instructions whic ollutant you list, briefly describe the reasons you believe i	h you know or have reason to believe will be it will be present.
1. Pollutant	2. Reason for Discharge	
NA	АИ	11 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 -
	7 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	d had a h
n visigidak	4 . 8 x 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	E James and and a
	3 3	10 to
	And the second	
	M Assert	
	A COMPANY	
	1-62-2	
	c host -	n plane I
	merch to	
gerindo	of besides	
	or brest king to the first team to	
extent of No.	district Control	in the teacher of
VI. Engineering Report on Wastewater Tr	reatment concerning your wastewater treatment, including engin	neering reports or pilot plant studies, check the
appropriate box below. Report Available	✓ No Report	
B. Provide the name and location of any production processes, wastewater constitutions.	existing plant(s) which, to the best of your knowledge stituents, or wastewater treatments.	resembles this production facility with respect to
Name	Location	Type Shering
Northeast Gateway Energy Bridge Project NPDES Permit MA0040266	Atlantic Ocean,13 miles offshore	from Gloucester, MA
PREPA Aguirre Power Station Complex NPDES Permit PR00016	60 Salinas, Puerto Rico	

VII. Other Information (Optional)

Use the space below to expand upon any of the above questions or to bring to the attention of the reviewer any other information you feel should be considered in establishing permit limitations for the proposed facility. Attach additional sheets if necessary.

None of the constituent concentrations consider an influent based contribution which must be considered for ambient surface water conditions at time of withdrawal.

Biological Oxygen Demand (BOD) estimate based on Puerto Rico Electric Power Authority (PREPA) discharge limits in Aguirre Power Plant NPDES permit (PR 0001660)

Chemical Oxygen Demand (COD) estimate based on effluent characteristics provided in USEPA (1999) nature of discharge report.

Total Organic Carbon (TOC) estimate based on effluent characteristics provided in USEPA (1999) nature of discharge report.

Total Suspended Solids (TSS) estimate based on USEPA Storet database data for TSS concentrations in Caribbean Sea waters and the Puerto Rico Environmental Quality Board (PREQB) narrative standard of no net increase in suspended solids other than by natural causes.

Flows based on projected discharge under maximum water use scenario for the FSRU or Gasport.

Ammonia concentration estimates based on USEPA (1999) nature of discharge report (for estimate purposes only).

Temperature (Winter) not to exceed the PREQB maximum standard of 32.2 oC (900F) within permitable mixing zone. Maximum temperature rise based on discharge monitoring reports for the Northeast Gateway Project NPDES permit modification. Excelerate Energy requests the application for a mixing zone for Outfalls 001A/B and 002A/B.

Temperature (Summer) not to exceed the PREQB maximum standard of 32.2 oC (900F) within permitable mixing zone. Maximum temperture rise based on discharge monitoring reports for the Northeast Gateway Project NPDES permit modification. Excelerate Energy requests the application for a mixing zone for Outfalls 001A/B and 002A/B.

Ph based on ambient conditions and PREQB standard of not to occur outside the range of 6.3 to 8.5 su

Residual chlorine levels based on anticipated residual levels for effective treatment for control of marine biofouling in water intake systems.

Excelerate Energy requests a PRDEQB mixing zone for Outfall 001A/B and Outfalll 002A/B.

VIII. CERTIFICATION

I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations.

A. Name and Official Title (type or print) EDWARD SCOTT, SOO	B. Phone No. 832-8/3-7/00
C. Signature	D. Date Signed 3 July 2013
The first of the second	

EPA Form 3510-2D (Rev. 8-90)

EXCELERATE ENERGY Aguirre Offshore GasPort Project

Thermal Plume Modeling Assessment - Water Use and Quality

July 11, 2012

Table of Contents

Section	pour uses a unite alifester prouper propinition of Personalists scored statem y s	Page
1.0 Intro	duction	Figure 1
2.0 Mod	el Selection and Approach	2
3.0 Mod	el Results for FSRU Outfall 001	3
4.0 Mod	el Results for FSRU Outfall 002	4
	el Results for LNGC Thermal Discharge	
6.0 Poter	ntial for Bed Scour	5
7.0 Sum	mary and Conclusions	5
	es	
Figures		11
	1 VISUAL PLUMES Output Files	
Appendix	2 JETLAG Output Files	30
List of T	Tables	
Table 1	FSRU and LNGC Discharge Properties	2
Table 2	Locations at Which Temperature Criterion Are Met for FSRU Outfall 001 Based on the CORMIX Model	
Table 3	Locations at Which Temperature Criterion Are Met for FSRU Outfall 001 Based on the VISUAL PLUMES UM3 Model	
Table 4	Locations at Which Temperature Criterion Are Met for FSRU Outfall 001 Based on the JETLAG Model	
Table 5	Locations at Which Temperature Criterion Are Met for FSRU Outfall 002 Based on the JETLAG Model	
Table 6	Locations at Which Temperature Criterion Are Met for LNGC Thermal Discharge Based on the VISUAL PLUMES UM3 Model	
Table 7	Locations at Which Temperature Criterion Are Met for LNGC Thermal Discharge Based on the JETLAG Model	
List of F	Figures	
Figure 1	Vertical plane trajectory for FSRU Outfall 001 with Discharge 5.3 meters below surface and no ambient current	9
Figure 2	Vertical plane trajectory for FSRU Outfall 001 with Discharge 5.3 meters below surface and a 0.10 m/s ambient current	
Figure 3	Vertical plane trajectory for FSRU Outfall 002 with Discharge 6.3 meters below surface and no ambient current	
Figure 4	Vertical plane trajectory for FSRU Outfall 002 with Discharge 6.3 meters below surface and a 0.10 m/s ambient current	

Table of Contents (Cont'd)

List of Figures (Cont'd)

Figure 5	Vertical plane trajectory for LNGC Thermal Discharge with Discharge 5.3 meters below surface and no ambient current	13
	Vertical plane trajectory for LNGC Thermal Discharge with Discharge 5.3 meters below surface and a 0.10 m/s ambient current	14

1.0 Introduction

The following memorandum documents the results of the thermal discharge modeling for the Aguirre Offshore GasPort Project. This evaluation documents the modeling of the thermal discharges from a Floating Storage and Regasification Unit (FSRU) and a Liquidified Natural Gas Carrier (LNGC) at the Aguirre Offshore GasPort project off the southern coast of Puerto Rico, offshore from the inlet to Jobos Bay. Separate thermal discharges from the fixed FSRU, a permanently moored EBRV continuously providing natural gas to the Aguirre Power Plant, and an intermittently moored LNGC, transferring liquefied natural gas (LNG) to the FSRU will be considered.

Discharge and Ambient Characteristics

Heated discharge properties and ambient conditions were assembled for FSRU Outfalls 001 and 002 and are summarized in Table 1. Flow rates, port diameters, orientations, and depths below the surface were taken for vessel specification. It is assumed that the discharges exist normally beneath the vessel hull and due to the length of the vessels, ambient currents are parallel to the vessel. The temperature rise of 12 °C for the FSRU Outfalls was based on operating records and renewal of the Northeast Gateway National Pollutant Discharge Elimination System (NPDES) Permit. Less information is available for the LNGC discharge. Provided data include the 2.72 cm/sec discharge and the 3 °C temperature rises based on data from the Jordan Cove FEIS. Other port data were taken as the same as the FSRU Outfall 001. Ambient temperature data were taken. Other port data were taken as the same as the FSRU Outfall 001. Ambient temperature data were taken as the maximum mean monthly average surface temperature form the Metocean Study (Forristall, 2010). Mean lower low water (MLLW) depths were taken from the NOAA chart with a depth of approximately 18.3 meters. NOAA Etopo01 (http://www.ngdc.noaa.gov/mgg/global/global.html) depths for the region were slightly deeper with a value of 20.95 meters. Generally shallow depths are more critical with respect to plume mixing so a value of 19.2 meters (applying 0.67 chart + 0.33 etopo values for estimating ambient depth to bottom) was used. Detailed bathymetry data collected for the Aguirre Gasport Project confirm 18.8 to 19.1 meter depth intervals at the proposed location. The location of the vessel discharge port for Outfall 001 and 002 was modeled using the minimum and maximum depth ranges presented in Table 1. Discharge port depth for the LNGC was assumed to be similar to that for the FSRU (Table 1).

High current velocities tend to result in rapid mixing and high dilution rates making low current speeds more critical for plume temperature dissipation. For this study, two cases were considered, no ambient currents (0 m/sec) and a low ambient current speed of 0.10 meter/sec parallel to the vessel hull and normal to the discharge port orientation. Tidal current data on the southern coast of Puerto Rico is sparse with Morelock, et al (undated) estimating maximum tidal current speeds of 0.1 to 0.2 meters per second. Mean current are of a similar magnitude. Thus the two current cases considered in this analysis are very conservative.

Puerto Rico has a maximum temperature criteria of 32.2° C (90° F) which with is used to define impacted areas for the plume temperature field and the possible need for a mixing zone. The US EPA Technical Guidance (US EPA, 1991) defines a number of approaches for defining mixing zones based on discharge characteristic. The approach most appropriate for this situation is defining the mixing zone as a distance equal to 50 times the discharge length scale in all directions. The resulting mixing zone lengths are 62 and 17.5 meters (201 and 57 feet) for

Outfalls 001 and 002 respectively for the FSRU and 62 meters for the LNGC main condenser discharge,

2.0 Model Selection and Approach

A number of models are available for thermal jet-plume evaluation including CORMIX (Doneker and Jirka, 2007), VISUAL PLUMES (VP) (Frick, et al., 2003), and JETLAG/VISIJET (JETLAG) (Lee and Cheung, 1990: Lee and Chu, 2003; Choi and Lee, 2007) which model single and multiport discharges into a non-evolving ambient environment. For complex discharge situations where multiple, potentially interacting discharges, or the need to address potential recirculation into intakes, or the presence of evolving ambient conditions, the Environmental Fluid Dynamics Code (EFDC) model (http://www.epa.gov/ceampubl/swater/efdc/index.html), is recommended. The EFDC model is three-dimensional hydrodynamic and transport model which includes an embedded version of JETLAG making it possible to simulate multiple intakes and thermal discharges in high complex and evolving ambient environments.

All of the four proposed models are recognized and accepted by regulatory agencies. CORMIX and VISUAL PLUMES were developed by US EPA and are widely used for mixing zone studies. JETLAG is widely used internally and has been accepted for mixing zone studies in US EPA Region 4 (Tetra Tech, 2008a, 2008b, 2010). The modeling approach used in this study is to use all three models, CORMIX, VISUAL PLUMES and JETLAG to simulate the discharge plume primarily since CORMIX fails to provide complex results. The relatively short trajectories to the location meeting the 32.2° C temperature criteria indicate that recirculation into the intake and tidal double dosing are not important and that an embedded buoyant jet in a larger scale EFDC model is not necessary.

Table 1. FSRU and LNGC Discharge Properties

Vessel Discharge Property	FSRU Discharge I Outfall 001	FSRU Discharge 2 Outfall 002	LNGC Thermal Discharge
Flow Rate, (cubic meters per second)	2.06	0.26	2.72
Discharge Port Diameter, (meters)	1.4	0.4	1.4
Port Area, (square meters)	1.54	0.126	1.54
Length Scale (square root of area), (meters)	1.24	0.35	1.24
Port Discharge Velocity, (meters/se)	1.34	2.06	1.34
Discharge Angle from Horizontal, (degrees)	-45	-45	-45
Discharge Angle form Ambient Flow, (degrees)	90	90	90
Discharge Depth Range, (meters)	5.3 - 7.4	6.3 -8.4	5.3 - 7.4
Discharge Temperature Above Ambient (° C)	12	12	3
Maximum Ambient Temperature, (° C)	29.6	29.6	29.6
Water Depth, (meters)	19.2	19.2	19.2
Mean Tidal or Ambient Current, (meters/sec)	0.10	0.10	0.10
Not to Exceed Temperature Criteria, (° C)	32.2	32.2	32.2
EPA Guidance Mixing Zone (50 x length scale), (meters)	62	17.5	62

3.0 Model Results for FSRU Outfall 001

Model results for FSRU Outfall 001 are presented in Tables 2 through 4. Results for CORMIX are shown in Table 2. CORMIX predicts that the plume impacts the bottom but provides no vertical trajectory prior to impact. Once the plume impacts the bottom, the plume is modeled as a bottom attached half plume with dilution output as a function of distance from the discharge provided. For the case based on no current and discharge depths below the surface of 5.3 and 6.35 meters, the 32.2 °C, temperature criteria is met at 42 meters, which is within the proposed 62 meter mixing zone for Outfall 001. For the 0.10 meter/second current case, the distance to meeting the temperature criteria is reduced to 28 meters. For the 7.4 meter discharge depth CORMIX fails to provide solutions. Given the unsatisfactory performance of CORMIX, this model was not considered appropriate for the set of parameters applied and shallow water depths present. Therefore, additional simulations were conducted with VISUAL PLUMES and JETLAG to assess the thermal discharge

Table 3 shows results for the simulation using the VISUAL UM3 module for FSRU Outfall 001. The model behaves quite differently than CORMIX and does not impact the bottom but approaches the bottom and then rises towards the surface. For the three port depth cases, the no ambient current scenario identifies the temperature criterion to be met at horizontal distances of 12.2 and 13.4 meters. Depths to meet the criteria start at 9.6 meter and decrease by approximately a meter for the successive depths below the surface. With a 0.1 meter/sec ambient velocity, the horizontal distance is reduced 6.3 meters due to an increase in ambient water entrainment caused by the modeled current. Depths to meet the criteria are similar to the no current case with depths to attainment in the range of 9.6 to 11.7 meters (Table 3).

Results for the application of JETLAG to FSRU Outfall 001 are presented in Table 4. The JETLAG model predicts bottom impact of the plume based on the edge of the plume intersecting the bottom. However if bottom impact was based on plume center line impacting the bottom there would be not bottom impact and the plume behavior would be similar to the falling and rising trajectory of VISUAL PLUMES whose impact criteria were not available. For the no ambient current case, JETLAG predicts somewhat larger horizontal distances, (15.3 meters or less), to meeting the temperature criteria. For the 6.35 and 7.4 meter port discharge depths, temperature at bottom impact is slightly over the criteria, but the criteria should be subsequently reached in less than one meter due additional mixing in the bottom boundary layer. Depths at which the temperature criterion are met are also larger than those predicted by VISUAL PLUMES. For the cases with ambient current horizontal distance to meet the temperature criteria are 8.6 meters, again somewhat larger than the VISUAL PLUMES predictions. Depths at which the criteria are met range from 12.4 to 14.5 meters.

From these results it is seen that the VISUAL PLUMES and JETLAG models produce consistent results with JETLAG being slightly more conservative in predicting longer distances to meet the 32.2 °C temperature criterion. However these predicted longer distances remain well within the proposed 62 meter mixing zone for Outfall 001. To provide a feel for VISUAL PLUMES and JETLAG results, Figures 1 and 2 present the vertical plane trajectories for the 5.3 meter below the surface discharge port cases without and with ambient current using JETLAG. JETLAG results are presented due to JETLAG having more refined graphics capabilities than the VISUAL PLUMES software. JETLAG predicts the possibility for the discharge plume to come into contact with the bottom but only when considering the edge of the plume perimeter. Both

models do predict the plume to turn and dissipate with both ambient distance and current conditions

4.0 Model Results for FSRU Outfall 002

The discharge from FSRU Outfall 002 was simulated with only JETLAG due to limitation with CORMIX and VISUAL PLUME handling buoyancy dominated, downward discharge angles. The results of the JETLAG simulations are shown in Table 5. For the no ambient current scenario, the plume is buoyancy dominated and immediately re-orients from a downward to an upward trajectory as shown in Figure 3. The temperature criterion is met at a horizontal distance of 1.9 meters and a vertical distance of 5.1 to 7.2 meter below the surface for the 6.3, 7.35, and 8.4 meter port discharge depths. In actuality, the near vertical plume from Outfall 002 would hug the vessel hull as it rises to the surface. For the case with a nominal ambient current (0.1 m/sec) the plume is slightly deflected into the horizontal plane due to the influence of the ambient current momentum (see Figure 4) and the increased entrainment reduces the horizontal distance to which the criteria is met is 0.5 meters or less. Depths below the water surface at which the criteria are met range from 6.7 to 8.8 meters. The plume trajectory ends below the surface where the plume density and ambient density differ by less than one per cent. The plume with ambient current will also in actuality hug the vessel hull. In all cases the temperature criterion is met well within the proposed 17.5 meter mixing zone.

5.0 Model Results for LNGC Thermal Discharge

The only information for the LNGC thermal discharge is a discharge rate of 2.72 cm/sec and a projected temperature rise of 3° C based on the characteristics of the Jordan Cove Project (FERC, 2009). In the absence of available data on port characteristics for the LNGC, the port diameter, orientation and discharge depths for FSRU Outfall 001 were used. Due to the 32 % higher discharge rate and four fold reduction in buoyancy, the jet plume will impact the bottom for all discharge depths. Since the CORMIX model does not provide complete information for a bottom impact situation, the LNGC thermal discharge was modeled only with VISUAL PLUMES and JETLAG.

Results for the VISUAL PLUMES simulations are summarized in Table 6. VISUAL PLUMES first output is the horizontal distance to sea bottom impact. Since the corresponding vertical positions are above the bed, it is inferred that bottom impact will be along the plume edges similar to JETLAG results for the FSRU predictions. Temperatures at the point of bottom impact are much lower than the discharge temperature of 32.6° C and the criterion temperature of 32.2° C. Horizontal distances to bottom impact range from 9.4 to 12 meters, well within the proposed 62 meter mixing zone based to 50 times the port length scale.

To get a more detail resolution of the jet-plume and the actual locations at which the temperature criterion will be met, JETLAG was used to simulate the 6 discharge scenarios summarized in Table 7. For the no ambient flow scenario, the temperature criterion is met at a horizontal distance of 0.82 meters. Corresponding depths at which the criteria are met range from 6.1 to 8.2 meters for discharges depths ranging from 5.3 to 7.4 meters. For the scenarios with a 0.1 m/sec ambient current, the temperature criterion is met at a horizontal distance of 0.41 meters (Table 7). Depths at which the temperature criterion are met range from 5.7 to 7.8 meters for discharge depths ranging from 5.3 to 7.4 meters. Graphical results corresponding to the 5.3 meter discharge depth case without and with an ambient current are shown in Figures 5 and 6,

respectively. Due to the high moment flux and small temperature rise, the 32.2° C temperature criterion is met within less than a port diameter distance from the vessel discharge.

6.0 Potential for Bed Scour

The VISUAL PLUMES simulation for FSRU Outfall 001 did not predict interaction of the discharge plume with the sea bottom. JETLAG predicted some potential for interaction of the FSRU and LNGC plume edge with the sea bottom for the main condenser outfalls for all port depths. The 7.4 meter discharge depth cases for the LNGC thermal discharges resulted in the highest jet velocities at the point of bottom impact. Since the ambient current entrains more slower moving ambient water as well as deflecting the plume more to the horizontal, the case with no ambient current results in the higher impact velocity of 0.46 meters/sec. Assuming a conservatively stress coefficient of 0.025, the 0.46 meter/sec velocity produces a bed stress of 0.53 Pa (Newtons/square meter) and a corresponding shear velocity of 0.023 m/sec. For sand beds, the stability of the bed can be determined using the Shield's criteria for incipient motion (Garcia, 2008). For the 0.023 m/sec shear velocity, the stable sediment grain size is approximately 1 mm, which is the boundary between coarse and very coarse sand. When the first discharge of the plume occurs, material finer than 1 mm, if present, will be eroded with coarser material transported as bed load and finer material as suspended load. However with the initial removal of the fine material, the bed will be eventually be sorted and armor as the concentration of coarse material at the be surface increases.

7.0 Summary and Conclusions

The simulations and analysis summarized in this memoranda indicate that the 32.2°C maximum temperature criteria will be met for the FSRU and LNGC thermal discharges well within calculated mixing zones based on the 50 times the port length scale (square root of port area) US EPA guidance (US EPA 1991). This conclusion is strongly supported by the unique approach of using three different buoyant jet models: CORMIX, VISUAL PLUMES and JETLAG. The unique characteristic of the discharges and ambient conditions results in FSRU Outfall 001 and the LNGC thermal discharge strongly interacting with the bottom or impacting the bottom. This interaction or potential for impact was not adequate in projecting bottom trajectory. For these two discharges, the CORMIX model did not provide the required level of results and the VISUAL PLUMES and JETLAG models were applied and yielded consistent results. For the initially downward but rapidly bending FSRU Outfall 002, the Lagrangian formulation of JETLAG provided detailed information which could not be obtained from the other two models.

For the FSRU and LNGC, the achievement of the 32.2 °C temperature criterion was attained well within the predicted mixing zones for all the modeled outfalls. The potential for interaction of the plumes with the sea bottom could result in some re-suspension and sorting of the bottom sediments. This effect however would be dependent upon the grain size of sediments present and the plume velocity at impact. Fine grained sediments such as silts and clays would be entrained and re-suspended in the water column during the early the initial start-up of the FSRU and LNGC operations. Available data for the sediments at the proposed the offshore terminal location indicate a mixture of coarse and shell fragments of a texture and grain size less prone to erosion based on project plume velocities near the bottom. The discharge velocity selected for the modeling effort chose a conservative value (the higher end of the range observed in similar vessels) and thus affords some degrees of conservativeness in the plume modeling exercise in predicting the interaction of thermal plume with the sea bottom.

Page 5

Table 1. FSRU and LNGC Discharge Properties

Vessel Discharge Property	FSRU Discharge 1 Outfall 001	FSRU Discharge 2 Outfall 002	LNGC Thermal Discharge
Flow Rate, (cubic meters per second)	2.06	0.26	2.72
Discharge Port Diameter, (meters)	1.4	0.4	1.4
Port Area, (square meters)	1.54	0.126	1.54
Length Scale (square root of area), (meters)	1.24	0.35	1.24
Port Discharge Velocity, (meters/se)	1.34	2.06	1.34
Discharge Angle from Horizontal, (degrees)	-45	-45	-45
Discharge Angle form Ambient Flow, (degrees)	90	90	90
Discharge Depth Range, (meters)	5.3 - 7.4	6.3 -8.4	5.3 - 7.4
Discharge Temperature Above Ambient (° C)	12	12	3
Maximum Ambient Temperature, (° C)	29.6	29.6	29.6
Water Depth, (meters)	19.2	19.2	19.2
Mean Tidal or Ambient Current, (meters/sec)	0.10	0.10	0.10
Not to Exceed Temperature Criteria, (° C)	32.2	32.2	32.2
EPA Guidance Mixing Zone (50 x length scale), (meters)	62	17.5	62

Table 2. Locations at Which Temperature Criterion Are Met for FSRU Outfall 001

Based on the CORMIX Model

Case	Discharge Depth. (meters)	(meters/	Criteria (32,2° C / 90° F) or Bottom Impact Temperature, (° C)	Horizontal Distance to Meet Criteria or to Bottom Impact, (meters)	Criteria or to
1	5.3	0	32.2	42	19.2*
2	6.35	0	32.2	42	19.2*
3	7.4	0	na	na	na
4	5.3	0.1	32.2	28	19.2*
5	6.35	0.1	32.2	28	19.2*
6	7.4	0.1	na ·	na	· na

^{*} Bottom impact with no intermediate trajectory information provided

Table 3. Locations at Which Temperature Criterion Are Met for FSRU Outfall 001

Based on the VISUAL PLUMES UM3 Model

Case	Depth,	Velocity. (meters/	Criteria (32.2° C / 90° F) or Bottom Impact Temperature, (° C)	Horizontal Distance to Meet Criteria or to Bottom Impact, (meters)	Criteria or to	
1	5.3	0	32.2	12.2	0.6	
2	6.35	0	32.2	12.2	10.7	
3	7.4	0	32.2	12.2	11.7	
4	5.3	0.1	32.2	63	0.6	
5	6.35	0.1	32.2	6.3	9.0	
6	7.4	0.1	32,2	6.3	11.7	

Table 4. Locations at Which Temperature Criterion Are Met for FSRU Outfall 001

Based on the JETLAG Model

Case	Discharge Depth, (meters)	(meters/	Criteria (32.2° C / 90° F) or Bottom Impact Temperature, (° C)	Horizontal Distance to Meet Criteria or to Bottom Impact, (meters)	Criteria or to
1	5.3	0	32.2	15.2	15.5
2	6.35	0	32.4	13.1	16.0
3	7.4	0	32.6	11.5	16.4
4	5.3	0.1	32.2	8.6	12.4
5	6.35	0.1	32.2	8.6	12.1
6	7.4	0.1	32.2	8.6	13.5

Table 5. Locations at Which Temperature Criterion Are Met for FSRU Outfall 002

Based on the JETLAG Model

TO THE PERSON NAMED IN THE									
Case	Discharge Depth,	Velocity. (meters/	Criteria (32.2° C / 90° F) or Bottom Impact Temperature, (° C)	Horizontal Distance to Meet Criteria or to Bottom Impact, (meters)	Meet Depth to Meet to Criteria or to act, Bottom Impact,				
1	6.3	0	32.2	1.9	5.1				
2	7.35	0	32.2	1.9	6.2				
3	8.4	0	32.2	1.9	7.2				
-4	6.3	0.1	32.2	0.5	6.5				
5	7.35	0.1	32.2	0.5	7.6				
6	8.4	0.1	32.2	0.4	8.8				

Table 6. Locations at Which Temperature Criterion Are Met for LNGC Thermal Discharge Based on the VISUAL PLUMES UM3 Model

Case	Depth,	Velocity, (meters/	Criteria (32.2° C / 90" F) or Bottom Impact Temperature, (" C)	Horizontal Distance to Meet Criteria or to Bottom Impact, (meters)	Depth to Meet Criteria or to Bottom Impact, (meters)
1	5.3	0	32.2	· <12.0*	<16.4*
2	6.35	0	32.2	<11.0*	<16.4*
3	7.4	0	32.2	<10.0*	<16.4*
4	5.3	0.1	32.2	<9.4*	<14.8*
5	6.35	0.1	32.2	<9.4*	<14.8*
6	7.4	0.1	32.2	<9.8*	<15.4*

^{*} Trajectory too coarse to provide near port information

Table 7. Locations at Which Temperature Criterion Are Met for LNGC Thermal Discharge Based on the JETLAG Model

Case	Depth,	Ambient Velocity, (meters/	Criteria (32.2° C / 90° F) or Bottom Impact Temperature, (° C)	Horizontal Distance to Meet Criteria or to Bottom Impact, (meters)	Depth to Meet Criteria or to Bottom Impact, (meters)
1	5.3	0	32.2	0.82	6.1
2	6.35	0	32.4	0.82	7.2
3	7.4	0	32.6	0.82	8.2
4	5.3	0.1	32.2	0.41	5.7
5	6.35	0.1	32.2	0.41	6.8
6	7.4	0.1	32.2	0.41	7.8

References

Choi, K. W., and J. H. W. Lee, 2007. Distributed Entrainment Sink Approach for Modeling Mixing and Transport in the Intermediate Field. Journal of Hydraulic Engineering, Vol. 133, No. 7, p 804-815. http://www.aoe-water.hku.hk/visjet/release-note.htm

Doneker, R. L., and G. H. Jirka, 2007. CORMIX User Manual: A Hydrodynamic Mixing Zone Model and Decision Support System for Pollutant Discharges into Surface Waters. EPA-823-K-07-001, 236 pp. http://www.cormix.info/index.php

Federal Energy Regulatory Commission (FERC), 2009. Final Environmental Impact Statement: Jordan Cove Energy and Pacific Connector Gas Pipeline Project. FERC/EIS 0223 F. May 2009.

Forristall Ocean Engineering, Inc. 2010. Metocean Criteria Study for the South Coast of Puerto Rico. Prepared for Excelerate Energy. 59 pp.

Frick, W. E., P.J.W. Roberts, L.R. Davis, J. Keyes, D.J. Baumgartner, and K.P. George. 2003. Dilution Models for Effluent Discharges, 4th Edition, (Visual Plumes). EPA/600/R-03/025. 148 pp. http://www.epa.gov/ceampubl/swater/vplume

Garcia, M. (editor), 2008. Sedimentation Engineering: Processes, Measurements, Modeling, and Practice. ASCE Manuals and Reports on Engineering Practice No. 110, American Society of Civil Engineers. 1132 pp.

Lee, J. H. W., and V. Cheung, 1990. Generalized Lagrangian model for buoyant jets in current. Journal of Environmental. Engineering. Vol. 116, No. 6, p 1085–1106. http://www.aoe-water.hku.hk/visjet/release-note.htm

Lee, J. H. W., and V. Chu, 2003. Turbulent Jets and Plumes: A Lagrangian

Approach, Kluwer Academic, Dordrecht.

Morelock, J, J. Capella, J. R. Garcia, and M. Barreto, No Date. Puerto Rico- Seas at the Millennium. University of Puerto, Department of Geology, 13 pp. geology.uprm.edu/Morelock/pdfdoc/morlok2.pdf - Puerto Rico

US EPA, 1991. Technical Support Document for Water Quality Based Toxic Control. EPA/505/2-90-001. 335 pp.

Tetra Tech, Inc. 2008a. Mixing Zone Study for the City of Ormond Beach: Proposed Mixing Zone and Effluent Limits. Prepared for the City of Ormond Beach, FL by Tetra Tech Inc., Research Triangle Park, NC, 31 pp.

Tetra Tech, Inc. 2008b. Proposed Relocation of the Havelock Wastewater Treatment Plant Discharge. Prepared for the City of Havelock, NC, by Tetra Tech Inc., Research Triangle Park, NC, 116 pp.

Tetra Tech, Inc. 2010. CFPUA Proposed Discharge Model Results. Prepared for the Cape Fear Public Utility Authority, Wilmington, NC, by Tetra Tech Inc., Research Triangle Park, NC, 32 pp.

A CHARLES THE TELESCOPER TO WARRY TO A STORING A STORING

a Self Pality, Roberts, "to David place," in Colombia and in a

the court of Copeling Research to the property big but of the big Stark in the

Figure 1. Vertical plane trajectory for FSRU Outfall 001 with Discharge 5.3 meters below surface and no ambient current

Figure 2. Vertical plane trajectory for FSRU Outfall 001 with Discharge 5.3 meters below surface and a 0.10 m/s ambient current

Figure 3. Vertical plane trajectory for FSRU Outfall 002 with Discharge 6.3 meters below surface and no ambient current

Figure 4. Vertical plane trajectory for FSRU Outfall 002 with Discharge 6.3 meters below surface and a 0.10 m/s ambient current

Figure 5. Vertical plane trajectory for LNGC Thermal Discharge with Discharge 5.3 meters below surface and no ambient current

Figure 6. Vertical plane trajectory for LNGC Thermal Discharge with Discharge 5.3 meters below surface and a 0.10 m/s ambient current

Appendix 1 VISUAL PLUMES Output Files

/ Windows UM3. 6/29/2012 11:10:06 AM Case 1; ambient file c:\plumes\VP plume 0.001.db; Diffuser table record 1: --

,1						
nb-cur	Amb-dir	Amb-sa	al Am	nb-tem A	mb-pol	Decay
r Disp	orsn					-
m/s	deg	p:	รน	C	kg/kg	s-1
m0.67/s2						
0.0	90.0	0	. 0	29.6	0.0	0.0
0.0				construction const		
. 0.0	90.0	0	. 0	29.6	0.0	0.0
0 0						
V-angle	H-angle	Ports A	cuteMZ (ChrncMZ P-d	epth Ttl-f	10 EII-
n t						
(deg)	(deg)	()	(m)	(m)	(m) (m3/	S)
r/kal						
-45.0	0.0	1.0	62.0	62.0	5.3 2.	06
						,
5.566						
mb-cur	P-dia	Polutnt	Dilutn	x-posn	y-posn	
(m/s)	(m)	(kg/kg)	()	(m)	(m)	
0.0	1.4	1000.0	1.	0.0	0.0;	max
re diluti	.on				0 0 1	0.4
0.0	6.288					.04
6.396						
0.0	6.472					.52
7.191	219.0	4.55				
0.0	7.826	164.6	6.05		0.0 2	20
8.595	127.5	7.816	18.5	7 0.0		
	mb-cur m/s m/s m0.67/s2 0.0 0.0 0.0 V-angle cnt (deg) g/kg) -45.0 0.0 5.566 mb-cur (m/s) 0.0 re diluti 0.0 6.396 0.0 7.191 0.0	mb-cur Amb-dir m/s deg m0.67/s2 0.0 90.0 0.0 0.0 V-angle H-angle cnt (deg) (deg) g/kg) -45.0 0.0 5.566 mb-cur P-dia (m/s) (m) 0.0 1.4 re dilution 0.0 6.288 6.396 259.3 0.0 6.472 7.191 219.0 0.0 7.826	mb-cur Amb-dir Amb-sa mys deg pa m0.67/s2 0.0 90.0 0 0.0 0.0 0.0 90.0 0 0.0 V-angle H-angle Ports A ent (deg) (deg) () g/kg) -45.0 0.0 1.0 0.0 5.566 mb-cur P-dia Polutnt (m/s) (m) (kg/kg) 0.0 1.4 1000.0 re dilution 0.0 6.288 263.5 6.396 259.3 3.844 0.0 6.472 256.4 7.191 219.0 4.55 0.0 7.826 164.6	hb-cur Amb-dir Amb-sal Ambro and Amb	Amb-cur Amb-dir Amb-sal Amb-tem Amb-cur Amb-dir Amb-sal Amb-tem Amb-cur Amb-dir Amb-sal Amb-tem Amb-cur Amb-sal Amb-tem Amb-cur Amb-sal Amb-tem Amb-cur Amb-sal Amb-tem Amb-sal Amb-	Amb-cur Amb-dir Amb-sal Amb-tem Amb-pol Amb-sal Amb-tem Amb-pol Amb-sal Amb-tem Amb-pol Amb-pol Amb-pol Amb-pol Amb-pol Amb-tem Amb-pol Amb

/ Windows UM3. 6/29/2012 11:08:33 AM Case 2; ambient file c:\plumes\VP plume 0.001.db; Diffuser table record 1: --

Far-er	Depth I	Amb-cur	Amb-di	Amb-s	sal Amb	o-tem 1	Amb-pol	Decay
		dir Disp						
in a	m	m/s	deg	a b	su	C	kg/kg	s-1
m/s		m0.67/s2						
	0.0	0.0	90.0	0	0.0	29.6	0.0	0.0
0.0	0.0							
	19.2	0.0	90.0	0	0.0	29.6	0.0	0.0
0.0	0.0	0.0						W 33
P-0	dia P-ele	v V-angle H	H-angle	Ports A	cuteMZ Ch	nrncMZ P-c	depth Ttl-flo	Rff-
sal	Temp Pol	itnt					er Eustranie de	
	(m) (m)	(deg)	(deg)	()	(m)	(m)	(m) (m3/s)	
(psu)	(C) (I	kg/kg)				And to		
			0.0	1.0	62.0	62.0	6.35 2.06	
0.0	41.6 100	00.0					2.00	
Froude	e number:	5.566						
	Depth 7	Amb-cur	P-dia	Polutnt	Dilutn	x-posp	V-nosn	
Step	(m)	(m/s)	(m)	(ka/ka)	()	(m)	(m)	
0	6.35	0.0	1.4	1000.0	7.0	0 0	0.0; ma	v
dilut	ion reached	d			2.0	0.0	0.0, me	LA.
		ore dilutio	on			rio risi adi		
	11.65		6.288	263.5	3.783	8.749	0.0 104	
	0.0		259.3			0.749	0.0 104	
	11.66		6.472		3.888		0 0 150	
	0.0			4.55			0.0 152	49
	7.391		7.826			0.0	-9-9-	
1.775					6.052	15.92		
1.775	0.0	0.799	120.7	8.256	19.06	0.0		

/ Windows UM3. 6/29/2012 11:06:49 AM Case 3; ambient file c:\plumes\VP plume 0.001.db; Diffuser table record 1: --

			1				
	Amb-cur		* Amb-s	al Amb	-tem A	mb-pol	Decay
Far-spd	Far-dir Di	sprsn				. />	
, n	m/s	deg	P	su	C	kg/kg	s1
m/s	deg = m0.67/s	32			3	100	
	0.0		0	. 0	29.6	0.0	0.0
0.0	0.0	0					
	0.0		0	. 0	29.6	0.0	0.0
0.0	0.0	. 0		-			ci nec
	P-elev V-angle	e H-angle	Ports A	cuteMZ Ch	irncMZ P-c	lepth Ttl-	flo Rii-
sal Temp	Polutnt		Service.		4 - 4	() ()	1-1
	(m) (deg)		()	(m)	(m)	(m) (m3	/S)
(psu)	(C) (kg/kg)				19/1	P. (10)	0.5
	11.8 -45.0	0.0	1.0	62.0	62.0	7.4	.06
	5 1000.0	27					
Froude num	per: 5.50	56		D/1			
Dej	oth Amb-cur	P-dia	Polutnt	Diluth	x-posn	y-posn	
Step	(m) (m/s)	(m)	(kg/kg)	()	(m)	(m)	
	7.4 0.0	1.4	1000.0	1.0	0.0	0.0	max
dilution r							Tal.
	for more dilu			2 422	0.740	0.0	104
100	12.7 0.0	6.288			8.749		104
12.71	0.0 6.396	259.3	3.844		0.0		150
107 1	2.71 0.0	6.472	256.4			0.0	152
12.01	0.0 7.191	219.0	4.55	11.97	0.0	0 0	226
	.441 0.0		164.6	6.052	15.92	0.0	220
1.604	0.0 9.035	113.7	8.759	19.58	0.0		

/ Windows UM3. 6/27/2012 2:19:59 PM Case 4; ambient file c:\plumes\VP plume 0.001.db; Diffuser table record 1: --

				N N LANDY			LECO	ru I:
Far-s	Depth	Amb-cur dir Dis	Amb-dir	Amb-s	sal A	mb-tem A	mb-pol	Decay
	m .c.r	m/a	ingré					
m/s	deg	m/s m0.67/s2			su	C	kg/kg	s-l
	0.0	0.1	90.0		0.0	29.6	0.0	0.0
0.0	0.0	0.0			The con-	27.0	0.0	0.0
		0.1	90.0		0.0	29.6	0 0	
0.0	0.0	0.0				29.0	0.0	0.0
P-	-dia P-ele	v V-angle H	d-angle	Porte 7	out oM7	ChrncMZ P-d	1	
sal	Temp Pol	utnt	rangic	TOICS F	cucema (Infinemz P-a	epth Ttl-	tlo Eff-
	(m) (m) (deg)	(dea)	()	(m)	n arms-V	49.64-9 LA	Section 1
(psu)	(C) (kg/kg)	(deg)	()	(m)	(m)	(m) (m3)	/s)
(F= C)	1 4 13	9 -45.0	0 0	. 7 0	50.0	Typinh I		
0 0	41 6 10	00.0	0.0	1.0	62.0	62.0	5.3 2	.06
Frond	de number:	00.0 F 566						
I I Out								0.6
0	pebcu	Amb-cur	P-dia	Polutnt	Dilutn	x-posn	y-posn	
scep	(m)	(m/s)	(m)	(kg/kg)	()	(m)	(m)	
U	5.3	0.1	1.4	1000.0	1.0	0.0	0.0;	
	icial for m	ore dilution	on				80.5	
84		0.1	6.831	228.0	4.37	5.678	0 976	
100		0.1	7.781	202.8	4.913	6.565	1.321	
120	9.881	0.1	8.574	184.2	5.41			
190	8.07	0.1		125.4				
200	7.256		11.16	110.8				
222	4.036		13.52	75.29			4.519	
			20.02	13.43	13.23	14.0	6.572	

/ Windows UM3. 6/29/2012 10:57:13 AM Case 5; ambient file c:\plumes\VP plume 0.001.db; Diffuser table record 1: --

Dent	 n Amb-c	ur Amb	 o-dir	Amb-sa	1 Amb-	tem An	mb-pol	Decay
Far-and	Far-dir	Disprsr	1					
1	n II	n/s	deg	ps	u	C	kg/kg	s-1
m/s	deg m0.	67/s2		0		0.6	0.0	0.0
	0 0		90.0	0.	0 . 2	9.6	0.0	0.0
0.0	0.0	0.0	00 0	0	0 2	9.6	0.0	0.0
	2 (90.0	0.	0 2	e e gelde		0 0 0, 10 000
0.0	0.0	0.0	arlo D	orte De	uteMZ Chr	ncMZ P-de	epth Ttl-flo	Eff-
P-dia	P-elev v-a	angre H-al	igre r	OLUB AU	accina cina	TIOTILE 2		
sal Tem	b borneur	(202)	leal	()	(m)	(m)	(m) (m3/s)	
(m) (psu)	(111)	(dea)	1697		,y			
(psu)	12.85	-45 0	0 - 0	1.0	62.0	62.0	6.35 2.06	5
0.0 41.								
Froude num	her:	5 566						
Do	nth Amh-	TILY D-1	dia Pol	utnt	Dilutn	x-posn	y-posn	
G1	/m\ /m	101	(m) (kc	ı/ka)	()	(m)	(m)	
0	6.35	0.1	1.4 1	1000.0	1.0	0.0	0.0;	
Potential	for more	dilution						
84 1	0.59	0.1 6	.831	228.0	4.371		0.976	
	0.84	0.1 7	.781	202.8	4.913	6.565		
120 1	0.93	0.1 8	.574	184.2	5.411	7.573		
190	9.12	0.1	10.5	125.4	7.944			
	.306	0.1 1	1.16	110.8	8.989			
	.106	0.1 1	4.23	68.2	14.61	14.43	7.176	

/ Windows UM3. 6/29/2012 11:03:22 AM
Case 6; ambient file c:\plumes\VP plume 0.001.db; Diffuser table record 1: --

Depth Amb-cur Amb-dir Amb-sal Amb-tem Amb-pol Dec Far-spd Far-dir Disprsn m m/s deg psu C kg/kg s m/s deg m0.67/s2	eay 5-1
m m/s deg psu C kg/kg s m/s deg m0.67/s2	
	.0
0.0 0.1 90.0 0.0 29.6 0.0 0	
19.2 0.1 90.0 0.0 29.6 0.0 0	0.0
P-dia P-elev V-angle H-angle Ports AcuteMZ ChrncMZ P-depth Ttl-flo Ef sal Temp Polutnt	£-
(m) (m) (deg) (deg) () (m) (m) (m3/s) (psu) (C) (kg/kg)	
1.4 11.8 -45.0 0.0 1.0 62.0 62.0 7.4 2.06 0.0 41.6 1000.0	
Froude number: 5.566	
Depth Amb-cur P-dia Polutnt Dilutn x-posn y-posn Step (m) (m/s) (m) (kg/kg) () (m) (m) 0 7.4 0.1 1.4 1000.0 1.0 0.0 0.0;	
Potential for more dilution	
84 11.64 0.1 6.831 228.0 4.371 5.678 0.976 100 11.89 0.1 7.781 202.8 4.913 6.565 1.321	
120 11.98 0.1 8.574 184.2 5.411 7.573 1.769 190 10.17 0.1 10.5 125.4 7.944 11.34 3.946	
200 9.356 0.1 11.16 110.8 8.989 12.06 4.519 231 4.326 0.1 14.83 63.0 15.81 14.77 7.688	

/ Windows UM3. 6/29/2012 12:45:49 PM Case 1; ambient file c:\plumes\VP plume 0.001.db; Diffuser table record 1: --

I	Depth	Amb-cur	Amb-dir	Amb-s	al Am	nb-tem A	mb-pol	Decay
Far-spo	d Far-	dir Dis	prsn					_
	m	m/s	deg	р	su	C	kg/kg	s-1
m/s	deg	m0.67/s2						1
	0.0	0.001	90.0	0	.0	29.6	0.0	0.0
		0.0						
		0.001		0	. 0	29.6	0.0	0.0
		0.0						
P-d:	ia P-ele	v V-angle	H-angle	Ports A	cuteMZ (ChrncMZ P-d	epth Ttl	-flo Eff-
	Temp Pol							
			(deg)	()	(m)	(m)	(m) (m)	3/s)
(psu)	(C) (kg/kg)				1.0		
1	.4 13.	9 -45.0	0.0	1.0	62.0	62.0	5.3	2.72
	32.6 10							
Froude	number:	15.56						
	Depth	Amb-cur	P-dia	Polutnt	Dilutn	x-posn	y-posn	
Step	(m)	(m/s)	(m)	(kg/kg)	().	(m)	(m)	
0	5.3	0.001	1.4	1000.0	1.0	0.0	0.0	; max
	on reache							
Potent.		ore diluti						
87			8.199			11.95	0.0229	100
		10.89		7.128				
		0.001				28.59		199
		19.3				0.18		
200	21.08	0.001				7 36.3		
260	5.228	0.001	22.19	52.92	18.88	50.85	0.347	surface,

/ Windows UM3. 6/29/2012 12:51:25 PM
Case 2; ambient file c:\plumes\VP plume 0.001.db; Diffuser table record 1: --

				e prame o	.001.00;	Dilluser	table re	cord 1:
Far-s	Depth' i	air Dis	prsn		sal Ar	nb-tem .	Amb-pol	Decay
2 - 0	m	m/s	deg	3	psu	C	kg/kg	s-1
m/s	deg						1.97 1.9	8-1
1.5		0.001	90.0	3	0.0	29.6	0.0	.0.0
0.0	0.0						0.0	0.0
	19.2	0.001	90.9	O	0.0	29.6	0.0	0.0
0.0	0.0	0.0						
BULL	lia P-elev Temp Poli	JUIL				ChrncMZ P-	depth Tt:	l-flo Eff-
(psu)	(m) (m) (C) (1	(a/ka)						m3/s)
0.0	1.4 12.85 32.6 100	5 -45.0 00.0	0.0	1.0	62.0	62.0	6.35	2.72
Froude	e number:					25.16		
	Depth 'A	Amb-cur	P-dia	Polutnt	Dilutn	x-posn	V-nogn	
Step	(111)	(m/s)	(m)	(ka/ka)	()	/m \	(m)	
0	6.35	0.001	1.4	1000.0	1.0	0.0	0.0	
dilut:	ion reached	i					deally s) max
	cial for mo		on					
84				189.5	5.273	11.03	0.0196	5 100
	0.001	10.89	140.2	7.128	16.61			102.1
		0.001	17.22	96.47	10.36	28.59		199
22.22	0.001				36.12			200
200	22.13			81.43			0.182	283
262	4.935	0.001	22.43	51.46	19.42			

/ Windows UM3. 6/29/2012 12:54:42 PM Case 3; ambient file c:\plumes\VP plume 0.001.db; Diffuser table record 1: --

De	pth .	Amb-cur	Amb-dir	Amb - s	sal Amb	o-tem A	Amb-pol	Decay
Far-spd	Far-	dir Dis	prsn					
	m	m/s	deg	I	osu	C	kg/kg	s-1
		m0.67/s2						
	0.0	0.001	90.0	(0.0	29.6	0.0	0.0
	0.0							
		0.001		(0.0	29.6	0.0	0.0
		0.0						
		v V-angle	H-angle	Ports A	AcuteMZ Ch	nrncMZ P-0	depth Ttl	-flo Eff-
sal T								
(m)	(m) (deg)	(deg)	()	(m)	(m)	(m) (m)	3/s)
(psu)	(C) (kg/kg)						27 25 55
1.4	11.	8 -45.0	0.0	1.0	62.0	62.0	7.4	2.72
0.0								
		15.56						
		Amb-cur						
Step	(m)	(m/s)	(m)	(kg/kg)	()	(m)		
0	7.4	0.001	1.4	1000.0	1.0	0.0	0.0	Potential
for more							e de ade	
- 80	16.63		7.036	205.1		9.914		100
21.42	0.001	10.89	140.2	7.128				
154	25.11	0.001		96.47			0.118	199
	0.001		81.78			0.18		
200	23.18			81.43			0.182	
263	5.268	0.001	22.56	50.7	19.7	51.97	0.363	

/ Windows UM3. 6/29/2012 12:40:26 PM
Case 4; ambient file c:\plumes\VP plume 0.001.db; Diffuser table record 1: --

075				ii i - chad	130-da4		rante reco	
77	Depth	Amb-cur	Amb-di:	r Amb-s	sal An	nb-tem	Amb-pol	Decay
rai-sp	a Far-	dir Dis	prsn				FOL	Decay
m / sı	m	m/s	de	9 I	osu	C	kg/kg	s-1
III/ S	cied	mu.67/s2					5,5	۵
. 0	0.0	0.1	90.		0.0	29.6	0.0	0.0
0.0	0.0	0.0			10. (3.0)		1 5 66	0.0
0 0	19.2	0.1	90.0	. C	0.0	29.6	0.0	0.0
0.0	0.0	0.0	A CONTRACTOR					
P-d	ıa P-ele	v V-angle	H-angle	Ports P	AcuteMZ C	hrncMZ P-c	lenth Ttl-	flo Rff
		THE CALL				e Aparbin	Poli ICI	LIO BIL-
(1	m) (m) (deg)	(deg)	()	(m)	(m)	(m) (m3	/s)
(psu)	(C) (kg/kg)						
1	.4 13.	9 -45.0	0.0	1.0	62.0	62.0	5 3 2	72
0.0	22.0 IU	00.0					1300000	. 72
Froude	number:	15.56						
	Depth .	Amb-cur	P-dia	Polutnt	Dilutn	x-posn	V-nogn	
	((()	(111/5)	(111)	(Ka/ka)	()	(m)	y posii	
U	5.3	0.1	1.4	1000.0	1.0	0.0	0.0;	
Potent.	ial for m	ore dilution	on			4.0	0.0,	
100	13.84	0.1	10.19	138.0	7.239	9.232	2.082	100
14.54	0.1	11.43	122.8	8.133	10.13			106
129	16.46	0.1		84.99				104
18.49	0.1	26.64	44.09	22.66	19 27	10 71	19.13	184
189	18.45	0.1	27.62	41 49	24 08	19 92		200
10.12	0.1	29.98	35.85	27.87	21.45			200
217	16.52			26.81				
					31.41	24.21	23.92	,

/ Windows UM3. 6/29/2012 12:36:49 PM Case 5; ambient file c:\plumes\VP plume 0.001.db; Diffuser table record 1: --

case J,	ambiene		-'	<u> </u>				
D	epth	Amb-cur	Amb-dir	Amb-sa	1 Amb	-tem A	mb-pol	Decay
	Far-	dir Disp	orsn					
	m	m/s	deg	ps	u .	C	kg/kg	s-1
m/s	deg	m0.67/s2 0.1				_	12.5	
	0.0	0.1	90.0	0.	0	29.6	0.0	0.0
0.0	0.0	0.0					0 0	0 0
		0.1		0.	0	29.6	0.0	0.0
0.0	0.0	0.0			ME CIL	NACZ EV -2	and a med	flo Dff
P-di	a P-ele	ev V-angle	H-angle	Ports Ac	cuteMZ Ch	irnemz P-d	epth iti-	TIO PIL-
sal	Temp Po.	lutnt			(m)	/m)	(m) /m2	1/0)
		m) (deg)		()	(111)	(111)	(m) (ma	0/0/
(psu)	(C)	(kg/kg) 85 -45.0	0 0	1 0	62 0	62 0	6 35 3	72
				1.0	62.0	02.0	0.55 2	/ Δ
		000.0						
Froude	number:	15.56 Amb-cur	n 445	Dolutat	Diluta	y-nogn	v-nosn	
	Depth	Amb-cur	P-dia	(lea/lea)	/ \	(m)	(m)	
Step	(m)	(m/s)	(111)	1000.0	1 0	0.0	0.0	
0	6.35	0.1	10 10	139 0	7 239	9 232	2.082	
			10.19	135.3	7 384	9.383	2.159	129
101	15.01	0.1 16.17				4.584		
			26.50	44.09	22.66			189
184		0.1		100 TO 10				
19.5	10.17	27.62 0.1	20 00	35.85				
		0.1	35 83	25.26	39.55	24.73	25.49	
220	17.1	0.1	55.05					

/ Windows UM3. 6/29/2012 12:33:20 PM Case 6; ambient file c:\plumes\VP plume 0.001.db; Diffuser table record 1: --

					001.02,	DILLUBGI	rante tec	ora 1:	
Far-spo	epth Far	Amb-cur -dir Disp	Amb-din	Amb-s	al Ar	mb-tem .	Amb-pol	De	сау
	m	m/s	dec	g p	su	C	kg/kg		s-1
	0.0	m0.67/s2 0.1	90.0	0	. 0	29.6	0.0		0.0
		0.0	90 () 0	0	29.6			
0.0	0.0	0.0					0.0		0.0
Sal	Lemb Lol	ev V-angle H Lutnt						-flo E	ff-
(psu)	(C) (n) (deg) (kg/kg)						3/s)	
1. 0.0	4 11. 32.6 10	8 -45.0	0.0	1.0	62.0	62.0	7.4	2.72	
Froude	number:	15.56	D 11						
Step	(m)	Amb-cur (m/s)	P-dia (m)	(kg/kg)	Dilutn ()	x-posn (m)			
96	7.4	0.1	1.4	1000.0	1.0	0.0	0.0		
15.94	0.1	10.19	138.0	7.239	9.232	8.632 2.082		100	
129 20,59	18.56 0.1			84.99 22.66		12.96	4.584	184	
189	20.55	0.1	27.62	41.49	24.08	19.92		200	
20.22		29.98 0.1	35.85 37.25			16.95 25.4	27.67		
							_ , , , , ,		

Appendix 2 JETLAG Output Files

Appendix 2 JETLAG Output Files

NE = Plume Element

XJ = X Coordinate, meters

YJ = Y Coordinate, meters

ZJ = Z Coordinate, meters

RJ = Plume Radius, meters

QJ = Plume Velocity, meters/second

DIL = Dilution, dimensionless

TEMP = Temperature °C

FSRU Outfall 001 - Case 1 (Table 4)

XJ YJ RJ QJ DIL TEMP 1 0.0000E+00 0.0000E+00 -0.5300E+01 0.7000E+00 0.2060E+01 0.1000E+01 0.4160E+02 2 0.4872E-01 0.0000E+00 -0.5349E+01 0.7112E+00 0.2027E+01 0.1016E+01 0.4141E+02 10 0.4145E+00 0.0000E+00 -0.5713E+01 0.7955E+00 0.1808E+01 0.1134E+01 0.4018E+02 20 0.8247E+00 0.0000E+00 -0.6117E+01 0.8894E+00 0.1613E+01 0.1266E+01 0.3908E+02 30 0.1197E+01 0.0000E+00 -0.6481E+01 0.9742E+00 0.1469E+01 0.1383E+01 0.3828E+02 40 0.1540E+01 0.0000E+00 -0.6813E+01 0.1052E+01 0.1357E+01 0.1491E+01 0.3765E+02 50 0.1860E+01 0.0000E+00 -0.7120E+01 0.1125E+01 0.1267E+01 0.1590E+01 0.3715E+02 60 0.2162E+01 0.0000E+00 -0.7406E+01 0.1192E+01 0.1192E+01 0.1682E+01 0.3673E+02 70 0.2448E+01 0.0000E+00 -0.7676E+01 0.1257E+01 0.1128E+01 0.1769E+01 0.3639E+02 80 0.2721E+01 0.0000E+00 -0.7930E+01 0.1318E+01 0.1074E+01 0.1850E+01 0.3609E+02 90 0.2983E+01 0.0000E+00 -0.8171E+01 0.1376E+01 0.1026E+01 0.1928E+01 0.3582E+02 100 0.3234E+01 0.0000E+00 -0.8401E+01 0.1431E+01 0.9837E+00 0.2002E+01 0.3560E+02 110 0.3477E+01 0.0000E+00 -0.8620E+01 0.1485E+01 0.9461E+00 0.2072E+01 0.3539E+02 120 0.3711E+01 0.0000E+00 -0.8830E+01 0.1537E+01 0.9123E+00 0.2139E+01 0.3521E+02 130 0.3939E+01 0.0000E+00 -0.9032E+01 0.1587E+01 0.8816E+00 0.2204E+01 0.3504E+02 140 0.4160E+01 0.0000E+00 -0.9226E+01 0.1635E+01 0.8537E+00 0.2266E+01 0.3490E+02 150 0.4375E+01 0.0000E+00 -0.9413E+01 0.1682E+01 0.8280E+00 0.2326E+01 0.3476E+02 160 0.4585E+01 0.0000E+00 -0.9594E+01 0.1727E+01 0.8044E+00 0.2384E+01 0.3463E+02 170 0.4790E+01 0.0000E+00 -0.9769E+01 0.1772E+01 0.7826E+00 0.2440E+01 0.3452E+02 180 0.4991E+01 0.0000E+00 -0.9938E+01 0.1815E+01 0.7623E+00 0.2494E+01 0.3441E+02 190 0.5187E+01 0.0000E+00 -0.1010E+02 0.1857E+01 0.7434E+00 0.2546E+01 0.3431E+02 200 0.5379E+01 0.0000E+00 -0.1026E+02 0.1898E+01 0.7257E+00 0.2597E+01 0.3422E+02 210 0.5568E+01 0.0000E+00 -0.1041E+02 0.1938E+01 0.7091E+00 0.2647E+01 0.3413E+02 220 0.5753E+01 0.0000E+00-0.1056E+02 0.1978E+01 0.6935E+00 0.2695E+01 0.3405E+02 230 0.5935E+01 0.0000E+00 -0.1071E+02 0.2016E+01 0.6788E+00 0.2741E+01 0.3398E+02 240 0.6114E+01 0.0000E+00 -0.1085E+02 0.2054E+01 0.6649E+00 0.2787E+01 0.3391E+02 250 0.6290E+01 0.0000E+00 -0.1099E+02 0.2091E+01 0.6517E+00 0.2831E+01 0.3384E+02 260 0.6463E+01 0.0000E+00 -0.1112E+02 0.2127E+01 0.6393E+00 0.2874E+01 0.3378E+02 270 0.6634E+01 0.0000E+00-0.1125E+02 0.2163E+01 0.6274E+00 0.2916E+01 0.3372E+02 280 0.6803E+01 0.0000E+00 -0.1138E+02 0.2198E+01 0.6161E+00 0.2957E+01 0.3366E+02 290 0.6969E+01 0.0000E+00 -0.1150E+02 0.2232E+01 0.6053E+00 0.2997E+01 0.3360E+02 300 0.7133E+01 0.0000E+00-0.1162E+02 0.2266E+01 0.5950E+00 0.3037E+01 0.3355E+02 310 0.7294E+01 0.0000E+00 -0.1174E+02 0.2300E+01 0.5852E+00 0.3075E+01 0.3350E+02 320 0.7454E+01 0.0000E+00 -0.1186E+02 0.2333E+01 0.5757E+00 0.3113E+01 0.3346E+02 330 0.7612E+01 0.0000E+00 -0.1197E+02 0.2365E+01 0.5667E+00 0.3149E+01 0.3341E+02 340 0.7769E+01 0.0000E+00-0.1208E+02 0.2397E+01 0.5580E+00 0.3185E+01 0.3337E+02 350 0.7923E+01 0.0000E+00 -0.1219E+02 0.2428E+01 0.5497E+00 0.3220E+01 0.3333E+02 360 0.8076E+01 0.0000E+00-0.1229E+02 0.2459E+01 0.5416E+00 0.3255E+01 0.3329E+02


```
370 0.8227E+01 0.0000E+00 -0.1239E+02 0.2490E+01 0.5339E+00 0.3289E+01 0.3325E+02
380 0.8377E+01 0.0000E+00 -0.1249E+02 0.2520E+01 0.5265E+00 0.3322E+01 0.3321E+02
390 0.8525E+01 0.0000E+00 -0.1259E+02 0.2550E+01 0.5193E+00 0.3354E+01 0.3318E+02
400 0.8672E+01 0.0000E+00 -0.1269E+02 0.2579E+01 0.5124E+00 0.3386E+01 0.3314E+02
410 0.8817E+01 0.0000E+00 -0.1278E+02 0.2608E+01 0.5057E+00 0.3418E+01 0.3311E+02
420 0.8961E+01 0.0000E+00 -0.1287E+02 0.2637E+01 0.4992E+00 0.3449E+01 0.3308E+02
430 0.9104E+01 0.0000E+00 -0.1296E+02 0.2665E+01 0.4929E+00 0.3479E+01 0.3305E+02
440 0.9246E+01 0.0000E+00 -0.1305E+02 0.2693E+01 0.4869E+00 0.3509E+01 0.3302E+02
450 0.9386E+01 0.0000E+00 -0.1313E+02 0.2721E+01 0.4810E+00 0.3538E+01 0.3299E+02
460 0.9525E+01 0.0000E+00 -0.1322E+02 0.2748E+01 0.4753E+00 0.3567E+01 0.3296E+02
470 0.9664E+01 0.0000E+00-0.1330E+02 0.2775E+01 0.4698E+00 0.3595E+01 0.3294E+02
480 0.9801E+01 0.0000E+00 -0.1338E+02 0.2802E+01 0.4644E+00 0.3623E+01 0.3291E+02
490 0.9937E+01 0.0000E+00 -0.1346E+02 0.2828E+01 0.4592E+00 0.3650E+01 0.3289E+02
500 0.1007E+02 0.0000E+00 -0.1353E+02 0.2854E+01 0.4542E+00 0.3677E+01 0.3286E+02
510 0.1021E+02 0.0000E+00 -0.1361E+02 0.2880E+01 0.4493E+00 0.3704E+01 0.3284E+02
520 0.1034E+02 0.0000E+00 -0.1368E+02 0.2906E+01 0.4445E+00 0.3730E+01 0.3282E+02
530 0.1047E+02 0.0000E+00 -0.1375E+02 0.2931E+01 0.4399E+00 0.3756E+01 0.3280E+02
540 0.1060E+02 0.0000E+00 -0.1382E+02 0.2956E+01 0.4354E+00 0.3781E+01 0.3277E+02
550 0.1073E+02 0.0000E+00 -0.1389E+02 0.2981E+01 0.4310E+00 0.3806E+01 0.3275E+02
560 0.1086E+02 0.0000E+00 -0.1396E+02 0.3006E+01 0.4267E+00 0.3831E+01 0.3273E+02
570 0.1099E+02 0.0000E+00 -0.1402E+02 0.3030E+01 0.4225E+00 0.3856E+01 0.3271E+02
580 0.1112E+02 0.0000E+00 -0.1408E+02 0.3054E+01 0.4185E+00 0.3880E+01 0.3269E+02
590 0.1125E+02 0.0000E+00-0.1415E+02 0.3078E+01 0.4145E+00 0.3903E+01 0.3267E+02
600 0.1137E+02 0.0000E+00 -0.1421E+02 0.3102E+01 0.4106E+00 0.3927E+01 0.3266E+02
610 0.1150E+02 0.0000E+00 -0.1427E+02 0.3125E+01 0.4069E+00 0.3950E+01 0.3264E+02
620 0.1162E+02 0.0000E+00 -0.1432E+02 0.3149E+01 0.4032E+00 0.3973E+01 0.3262E+02
630 0.1175E+02 0.0000E+00 -0.1438E+02 0.3172E+01 0.3996E+00 0.3996E+01 0.3260E+02
640 0.1187E+02 0.0000E+00 -0.1444E+02 0.3195E+01 0.3961E+00 0.4018E+01 0.3259E+02
650 0.1199E+02 0.0000E+00 -0.1449E+02 0.3217E+01 0.3927E+00 0.4041E+01 0.3257E+02
660 0.1212E+02 0.0000E+00 -0.1454E+02 0.3240E+01 0.3894E+00 0.4063E+01 0.3255E+02
670 0.1224E+02 0.0000E+00 -0.1459E+02 0.3262E+01 0.3861E+00 0.4084E+01 0.3254E+02
680 0.1236E+02 0.0000E+00 -0.1464E+02 0.3284E+01 0.3829E+00 0.4106E+01 0.3252E+02
690 0.1248E+02 0.0000E+00 -0.1469E+02 0.3306E+01 0.3798E+00 0.4127E+01 0.3251E+02
700 0.1260E+02 0.0000E+00 -0.1474E+02 0.3328E+01 0.3768E+00 0.4148E+01 0.3249E+02
710 0.1272E+02 0.0000E+00 -0.1478E+02 0.3350E+01 0.3738E+00 0.4169E+01 0.3248E+02
720 0.1284E+02 0.0000E+00 -0.1483E+02 0.3371E+01 0.3709E+00 0.4190E+01 0.3246E+02
730 0.1295E+02 0.0000E+00 -0.1487E+02 0.3392E+01 0.3681E+00 0.4211E+01 0.3245E+02
740 0.1307E+02 0.0000E+00 -0.1491E+02 0.3414E+01 0.3653E+00 0.4231E+01 0.3244E+02
750 0.1319E+02 0.0000E+00 -0.1495E+02 0.3434E+01 0.3626E+00 0.4251E+01 0.3242E+02
760 0.1330E+02 0.0000E+00 -0.1499E+02 0.3455E+01 0.3599E+00 0.4271E+01 0.3241E+02
770 0.1342E+02 0.0000E+00 -0.1503E+02 0.3476E+01 0.3573E+00 0.4291E+01 0.3240E+02
780 0.1353E+02 0.0000E+00 -0.1507E+02 0.3496E+01 0.3548E+00 0.4311E+01 0.3238E+02
790 0.1365E+02 0.0000E+00 -0.1510E+02 0.3517E+01 0.3523E+00 0.4331E+01 0.3237E+02
800 0.1376E+02 0.0000E+00 -0.1514E+02 0.3537E+01 0.3499E+00 0.4351E+01 0.3236E+02
810 0.1388E+02 0.0000E+00 -0.1517E+02 0.3557E+01 0.3475E+00 0.4370E+01 0.3235E+02
820 0.1399E+02 0.0000E+00 -0.1521E+02 0.3577E+01 0.3452E+00 0.4389E+01 0.3233E+02
 830 0.1410E+02 0.0000E+00 -0.1524E+02 0.3596E+01 0.3429E+00 0.4409E+01 0.3232E+02
 840 0.1421E+02 0.0000E+00 -0.1527E+02 0.3616E+01 0.3407E+00 0.4428E+01 0.3231E+02
 850 0.1432E+02 0.0000E+00 -0.1530E+02 0.3635E+01 0.3385E+00 0.4447E+01 0.3230E+02
 860 0.1444E+02 0.0000E+00 -0.1533E+02 0.3655E+01 0.3364E+00 0.4466E+01 0.3229E+02
 870 0.1455E+02 0.0000E+00 -0.1535E+02 0.3674E+01 0.3343E+00 0.4485E+01 0.3228E+02
 880 0.1466E+02 0.0000E+00 -0.1538E+02 0.3693E+01 0.3322E+00 0.4504E+01 0.3226E+02
 890 0.1477E+02 0.0000E+00 -0.1541E+02 0.3712E+01 0.3302E+00 0.4523E+01 0.3225E+02
```


900 0.1488E+02 0.0000E+00 -0.1543E+02 0.3731E+01 0.3283E+00 0.4541E+01 0.3224E+02 910 0.1498E+02 0.0000E+00 -0.1545E+02 0.3749E+01 0.3264E+00 0.4560E+01 0.3223E+02 920 0.1509E+02 0.0000E+00 -0.1548E+02 0.3768E+01 0.3245E+00 0.4579E+01 0.3222E+02 927 0.1517E+02 0.0000E+00 0.1549E+02 0.3781E+01 0.3232E+00 0.4592E+01 0.3221E+02

50 U 21521-01 O UUDDE 400-0 REAGE (OF DALESEADT O 11925-01 O 16-02 DE CONTROL DE STEADE

220 0.53438+01 0.00006+00 -0.11616+02 0.104385+01 0.62365+00 0.27418 +01 0.34051+02

250 0 63906-01 0.00006+00-0 22046-02 0 20316-01 0.65175-00 02536-01 0.31846-02

250 0 79282+01 0 000006+00-0.1824E+02 0.2428E+01 0.54976+00 0.3220C+01 0.3333E+02

FSRU Outfall 001 – Case 2 (Table 4)

NE XJ YJ	ZJ RJ QJ	DIL TEMP			
1 0.0000E+00 0.00	000E+00 -0.6350E+01 C	0.7000E+00 0.2	060E+01 0.1	000E+01 0.4	160E+02
2 0.4872E-01 0.00	000E+00 -0.6399E+01 0	.7112E+00 0.20	027E+01 0.10	016E+01 0.4	141E+02
10 0.4145E+00 0.0	0000E+00 -0.6763E+01	0.7955E+00 0.1	1808E+01 0.3	1134E+01 0.	4018E+02
20 0.8247E+00 0.0	0000E+00 -0.7167E+01	0.8894E+00 0.1	1613E+01 0.:	1266E+01 0.	3908E+02
30 0.1197E+01 0.0	0000E+00 -0.7531E+01	0.9742E+00 0.1	1469E+01 0.	1383E+01 O.	3828E+02
40 0.1540E+01 0.0	0000E+00 -0.7863E+01	0.1052E+01 0.3	1357E+01 0	1491E+01 O.	3765E+02
50 0.1860E+01 0.0	0000E+00 -0.8170E+01	0.1125E+01 0.1	1267E+01 0.	1590E+01 O.	3715E+02
60 0.2162F+01 0.0	0000E+00 -0.8456E+01	0.1192E+01 0.1	1192E+01 O.	1682E+01 O.	3673E+02
70 0 2448F+01 0.0	0000E+00 -0.8726E+01	0.1257E+01 0.1	1128E+01 O.	1769E+01 O.	3639E+02
80 0.2721F+01 0.0	0000E+00 -0.8980E+01	0.1318E+01 0.	1074E+01 0.	1850E+01 O.	3609E+02
90 0 2983F+01 0.0	0000E+00 -0.9221E+01	0.1376E+01 O.	1026E+01 0.	1928E+01 0.	3582E+02
100 0 3234F+01 0.	.0000E+00 -0.9451E+01	0.1431E+01 0	.9837E+00 0	.2002E+01 C).3560E+02
110 0.3477F+01 0	.0000E+00 -0.9670E+01	0.1485E+01 0	.9461E+00 0	.2072E+01 C).3539E+02
120 0.3711E+01 0	.0000E+00 -0.9880E+01	0.1537E+01 0	.9123E+00 0	.2139E+01 C).3521E+02
120 0.37112701 0.	.0000E+00 -0.1008E+02	0.1587E+01 0	.8816E+00 C	.2204E+01 C).3504E+02
140 0.33332101 0.	.0000E+00 -0.1028E+02	0.1635E+01 0	.8537E+00 C	.2266E+01 ().3490E+02
150 0.41000101 0	.0000E+00 -0.1046E+02	0.1682E+01 0	.8280E+00 C).2326E+01 ().3476E+02
150 0.45756+01 0	.0000E+00 -0.1064E+02	0.1727E+01 C	.8044E+00 C).2384E+01 ().3463E+02
150 0.43836+01 0	.0000E+00 -0.1082E+02	0.1772F+01 C	.7826E+00 (0.2440E+01 (0.3452E+02
1/0 0.4/902+01 0	0.0000E+00 -0.1099E+02	0.1815F+01 (0.7623E+00 ().2494E+01 (0.3441E+02
180 0.49916+01 0	0.0000E+00 -0.1115E+02	0.1857F+01 (0.7434E+00 (0.2546E+01 (0.3431E+02
190 0.518/E+01 0	0.0000E+00 -0.1113E+02	0.1898F+01 (0.7257E+00 (0.2597E+01	0.3422E+02
200 0.53/9E+01 0	0.0000E+00 -0.1131E+02	2 0.1038E+01 (7091E+00 (0.2647E+01	0.3413E+02
210 0.5568E+01 0	0.0000E+00 -0.1140E+02	2 0.1938E+01 (0.6935F+00 (0.2695E+01	0.3405E+02
220 0.5753E+01 0	0.0000E+00 -0.1161E+02 0.0000E+00 -0.1176E+02	2 0.19786401 (0.6788F±00 (7741F+01	0.3398F+02
230 0.5935E+01 0).0000E+00 -0.1176E+02).0000E+00 -0.1190E+02	2 0.20105+01 0	0.6788E+00 (0.2741E:01	0.3391F+02
240 0.6114E+01 0).0000E+00 -0.1190E+0	2 0.20546+01 (0.00432700	0.2707E+01	0.3384F+02
250 0.6290E+01 C	0.0000E+00 -0.1204E+03	2 0.20916+01 (0.0317E+00	0.2031E+01	0.3378F+02
260 0.6463E+01 C	0.0000E+00 -0.1217E+03	2 0.21275+01 (0.03335100	0.2074E:01	0.3372F+02
270 0.6634E+01 C	0.0000E+00 -0.1230E+0	2 0.21035+01	0.02746+00	0.2910E101	0.3372E+02
280 0.6803E+01 C	0.0000E+00 -0.1243E+0	2 0.21985+01	0.61616+00	0.2937E+01	0.3360E+02
290 0.6969E+01 (0.0000E+00 -0.1255E+0	2 0.2232E+01	0.60535+00	0.29376+01	0.3355E±02
300 0.7133E+01 (0.0000E+00 -0.1267E+0	2 0.2266E+01	0.5950E+00	0.3037E+01	0.3353E+02
310 0.7294E+01 (0.0000E+00 -0.1279E+0	2 0.2300E+01	0.585ZE+00	0.30/3E+01	0.3330E+02
320 0.7454E+01 (0.0000E+00 -0.1291E+0	2 0.2333E+01	0.5/5/E+00	0.3113E+01	0.5540E+02
330 0.7612E+01 (0.0000E+00 -0.1302E+0	0.2365E+01	0.5667E+00	0.3149E+01	0.3341E+02
340 0.7769E+01 (0.0000E+00 -0.1313E+0	0.239/E+U1	0.5580E+00	0.3183E+01	0.33376+02
350 0.7923E+01 (0.0000E+00 -0.1324E+0	0.2428E+01	0.549 /E+00	0.3220E+01	0.33335102
360 0.8076E+01	0.0000E+00 -0.1334E+0	0.2459E+01	0.5416E+00	0.3255E+01	0.3329E+02
370 0.8227E+01	0.0000E+00 -0.1344E+0	0.2490E+01	0.5339E+00	0.3289E+01	0.3325E+02
380 0.8377E+01	0.0000E+00 -0.1354E+0	02 0.2520E+01	0.5265E+00	0.3322E+01	0.3321E+02
390 0.8525E+01	0.0000E+00 -0.1364E+0	02 0.2550E+01	0.5193E+00	0.3354E+01	0.3318E+02
400 0 8672F+01	0.0000F+00 -0.1374E+0	0.2579E+01	0.5124E+00	0.3386E+01	0.3314E+02
410 0.8817E+01	0.0000E+00 -0.1383E+0	02 0.2608E+01	0.5057E+00	0.3418E+01	0.3311E+02
420 0 8961F+01	0.0000F+00 -0.1392E+0	02 0.2637E+01	0.4992E+00	0.3449E+01	0.3308E+02
420 0 9104F+01	0.0000F+00 -0.1401E+0	02 0.2665E+01	0.4929E+00	0.3479E+01	0.3305E+02
440 0 9246F±01	0.0000F+00 -0.1410E+0	02 0.2693E+01	0.4869E+00	0.3509E+01	0.3302E+02
450 0 9386F+01	0.0000F+00 -0.1418E+0	02 0.2721E+01	0.4810E+00	0.3538E+01	0.3299E+02
460 00525F+01	0.0000F+00 -0.1427E+	02 0.2748E+01	0.4753E+00	0.3567E+01	0.3296E+02
470 0.9664E+01	0.0000E+00 -0.1435E+	02 0.2775E+01	0.4698E+00	0.3595E+01	0.3294E+02


```
480 0.9801E+01 0.0000E+00 -0.1443E+02 0.2802E+01 0.4644E+00 0.3623E+01 0.3291E+02
490 0.9937E+01 0.0000E+00-0.1451E+02 0.2828E+01 0.4592E+00 0.3650E+01 0.3289E+02
500 0.1007E+02 0.0000E+00 -0.1458E+02 0.2854E+01 0.4542E+00 0.3677E+01 0.3286E+02
510 0.1021E+02 0.0000E+00-0.1466E+02 0.2880E+01 0.4493E+00 0.3704E+01 0.3284E+02
520 0.1034E+02 0.0000E+00 -0.1473E+02 0.2906E+01 0.4445E+00 0.3730E+01 0.3282E+02
530 0.1047E+02 0.0000E+00 -0.1480E+02 0.2931E+01 0.4399E+00 0.3756E+01 0.3280E+02
540 0.1060E+02 0.0000E+00 -0.1487E+02 0.2956E+01 0.4354E+00 0.3781E+01 0.3277E+02
550 0.1073E+02 0.0000E+00 -0.1494E+02 0.2981E+01 0.4310E+00 0.3806E+01 0.3275E+02
560 0.1086E+02 0.0000E+00 -0.1501E+02 0.3006E+01 0.4267E+00 0.3831E+01 0.3273E+02
570 0.1099E+02 0.0000E+00 -0.1507E+02 0.3030E+01 0.4225E+00 0.3856E+01 0.3271E+02
580 0.1112E+02 0.0000E+00-0.1513E+02 0.3054E+01 0.4185E+00 0.3880E+01 0.3269E+02
590 0.1125E+02 0.0000E+00 -0.1520E+02 0.3078E+01 0.4145E+00 0.3903E+01 0.3267E+02
600 0.1137E+02 0.0000E+00 -0.1526E+02 0.3102E+01 0.4106E+00 0.3927E+01 0.3266E+02
610 0.1150E+02 0.0000E+00 -0.1532E+02 0.3125E+01 0.4069E+00 0.3950E+01 0.3264E+02
620 0.1162E+02 0.0000E+00-0.1537E+02 0.3149E+01 0.4032E+00 0.3973E+01 0.3262E+02
630 0.1175E+02 0.0000E+00 -0.1543E+02 0.3172E+01 0.3996E+00 0.3996E+01 0.3260E+02
640 0.1187E+02 0.0000E+00 -0.1549E+02 0.3195E+01 0.3961E+00 0.4018E+01 0.3259E+02
650 0.1199E+02 0.0000E+00-0.1554E+02 0.3217E+01 0.3927E+00 0.4041E+01 0.3257E+02
660 0.1212E+02 0.0000E+00 -0.1559E+02 0.3240E+01 0.3894E+00 0.4063E+01 0.3255E+02
670 0.1224E+02 0.0000E+00 -0.1564E+02 0.3262E+01 0.3861E+00 0.4084E+01 0.3254E+02
680 0.1236E+02 0.0000E+00 -0.1569E+02 0.3284E+01 0.3829E+00 0.4106E+01 0.3252E+02
690 0.1248E+02 0.0000E+00 -0.1574E+02 0.3306E+01 0.3798E+00 0.4127E+01 0.3251E+02
700 0.1260E+02 0.0000E+00 -0.1579E+02 0.3328E+01 0.3768E+00 0.4148E+01 0.3249E+02
710 0.1272E+02 0.0000E+00 -0.1583E+02 0.3350E+01 0.3738E+00 0.4169E+01 0.3248E+02
720 0.1284E+02 0.0000E+00 -0.1588E+02 0.3371E+01 0.3709E+00 0.4190E+01 0.3246E+02
730 0.1295E+02 0.0000E+00 -0.1592E+02 0.3392E+01 0.3681E+00 0.4211E+01 0.3245E+02
740 0.1307E+02 0.0000E+00 -0.1596E+02 0.3414E+01 0.3653E+00 0.4231E+01 0.3244E+02
744 0.1312E+02 0.0000E+00 -0.1598E+02 0.3422E+01 0.3642E+00 0.4239E+01 0.3243E+02
```

240 0.61146+01 0.00006+00 0.12956+02 0.20586+01 0.66696+00 0.27676+6

270 O 66346-61 0.00006-00 0.1355-00 O.1836-01 0.62745-06 O.2916-01 O.31725-02

410 BEFITE OF A DOCIOE-OR A LESSE-OR B. ZEDRE-OT D. SOSTE-OR O. S418E-O1 G. S511E-O2

FSRU Outfall 001 - Case 3 (Table 4)

NE XJ YJ ZJ RJ QJ DIL TEN	MP
1 0.0000E+00 0.0000E+00-0.7400E+01 0.7000E+00	0.2060E+01 0.1000E+01 0.4160E+02
2 0.4872E-01 0.0000E+00 -0.7449E+01 0.7112E+00	0.2027E+01 0.1016E+01 0.4141E+02
10 0.4145E+00 0.0000E+00 -0.7813E+01 0.7955E+00	0.1808E+01 0.1134E+01 0.4018E+02
20 0.8247E+00 0.0000E+00 -0.8217E+01 0.8894E+00	0.1613E+01 0.1266E+01 0.3908E+02
30 0.1197E+01 0.0000E+00 -0.8581E+01 0.9742E+00	0.1469E+01 0.1383E+01 0.3828E+02
40 0.1540E+01 0.0000E+00 -0.8913E+01 0.1052E+01	0.1357E+01 0.1491E+01 0.3765E+02
50 0.1860E+01 0.0000E+00 -0.9220E+01 0.1125E+01	0.1267E+01 0.1590E+01 0.3715E+02
60 0.2162E+01 0.0000E+00 -0.9506E+01 0.1192E+01	0.1192E+01 0.1682E+01 0.3673E+02
70 0.2448E+01 0.0000E+00 -0.9776E+01 0.1257E+01	1 0.1128E+01 0.1769E+01 0.3639E+02
80 0.2721E+01 0.0000E+00 -0.1003E+02 0.1318E+03	1 0.1074E+01 0.1850E+01 0.3609E+02
90 0.2983E+01 0.0000E+00 -0.1027E+02 0.1376E+03	1 0.1026E+01 0.1928E+01 0.3582E+02
100 0.3234E+01 0.0000E+00 -0.1050E+02 0.1431E+0	01 0.9837E+00 0.2002E+01 0.3560E+02
1.10 0.3477E+01 0.0000E+00 -0.1072E+02 0.1485E+0	01 0.9461E+00 0.2072E+01 0.3539E+02
120 0.3711E+01 0.0000E+00 -0.1093E+02 0.1537E+0	01 0.9123E+00 0.2139E+01 0.3521E+02
130 0.3939E+01 0.0000E+00 -0.1113E+02 0.1587E+0	01 0.8816E+00 0.2204E+01 0.3504E+02
140 0.4160E+01 0.0000E+00 -0.1133E+02 0.1635E+0	01 0.8537E+00 0.2266E+01 0.3490E+02
150 0.4375E+01 0.0000E+00 -0.1151E+02 0.1682E+0	01 0.8280E+00 0.2326E+01 0.3476E+02
160 0.4585E+01 0.0000E+00 -0.1169E+02 0.1727E+0	01 0.8044E+00 0.2384E+01 0.3463E+02
170 0.4790E+01 0.0000E+00 -0.1187E+02 0.1772E+0	01 0,7826E+00 0.2440E+01 0.3452E+02
180 0.4991E+01 0.0000E+00 -0.1204E+02 0.1815E+0	01 0.7623E+00 0.2494E+01 0.3441E+02
190 0.5187E+01 0.0000E+00 -0.1220E+02 0.1857E+0	01 0.7434E+00 0.2546E+01 0.3431E+02
200 0.5379E+01 0.0000E+00 -0.1236E+02 0.1898E+0	01 0.7257E+00 0.2597E+01 0.3422E+02
210 0.5568E+01 0.0000E+00 -0.1251E+02 0.1938E+	01 0.7091E+00 0.2647E+01 0.3413E+02
220 0.5753E+01 0.0000E+00 -0.1251E+02 0.1978E+0	01 0.6935E+00 0.2695E+01 0.3405E+02
230 0.5935E+01 0.0000E+00 -0.1281E+02 0.2016E+	01 0.6788E+00 0.2741E+01 0.3398E+02
240 0.6114E+01 0.0000E+00 -0.1295E+02 0.2054E+	01 0.6649E+00 0.2787E+01 0.3391E+02
250 0.6290E+01 0.0000E+00 -0.1309E+02 0.2091E+	01 0.6517E+00 0.2831E+01 0.3384E+02
260 0.6463E+01 0.0000E+00 -0.1322E+02 0.2127E+	01 0.6393E+00 0.2874E+01 0.3378E+02
270 0.6634E+01 0.0000E+00 -0.1335E+02 0.2163E+	01 0.6274E+00 0.2916E+01 0.3372E+02
280 0.6803E+01 0.0000E+00 -0.1348E+02 0.2198E+	01 0.6161E+00 0.2957E+01 0.3366E+02
290 0.6969E+01 0.0000E+00 -0.1360E+02 0.2232E+	01 0.6053E+00 0.2997E+01 0.3360E+02
300 0.7133E+01 0.0000E+00 -0.1372E+02 0.2266E+	01 0.5950E+00 0.3037E+01 0.3355E+02
310 0.7294E+01 0.0000E+00 -0.1384E+02 0.2300E+	01 0.5852E+00 0.3075E+01 0.3350E+02
320 0.7454E+01 0.0000E+00 -0.1396E+02 0.2333E+	-01 0.5757E+00 0.3113E+01 0.3346E+02
220 0.7612E+01 0.0000E+00 -0.1407E+02 0.2365E+	-01 0.5667E+00 0.3149E+01 0.3341E+02
340 0.7769E+01 0.0000E+00 -0.1418E+02 0.2397E+	-01 0.5580E+00 0.3185E+01 0.3337E+02
250 0.70225±01 0.00005±00 -0.14295±02 0.24285±	-01 0.5497E+00 0.3220E+01 0.3333E+02
260 0 8076F+01 0 0000F+00 -0.1439E+02 0.2459E+	-01 0.5416E+00 0.3255E+01 0.3329E+02
270 0 8227E+01 0 0000F+00 -0.1449E+02 0.2490E+	+01 0.5339E+00 0.3289E+01 0.3325E+02
290 0 8377F+01 0 0000F+00 -0.1459E+02 0.2520E+	+01 0.5265E+00 0.3322E+01 0.3321E+02
390 0.8525E+01 0.0000E+00 -0.1469E+02 0.2550E-	+01 0.5193E+00 0.3354E+01 0.3318E+02
400 0.8672E+01 0.0000E+00 -0.1479E+02 0.2579E-	+01 0.5124E+00 0.3386E+01 0.3314E+02
410 0.8817E+01 0.0000E+00 -0.1488E+02 0.2608E-	+01 0.5057E+00 0.3418E+01 0.3311E+02
420 0 8961 F+01 0 0000 F+00 -0.1497 E+02 0.2637 E-	+01 0.4992E+00 0.3449E+01 0.3308E+02
420 0 0104F+01 0 0000F+00 -0.1506E+02 0.2665E-	+01 0.4929E+00 0.3479E+01 0.3305E+02
440 0 9246F+01 0 0000F+00 -0.1515E+02 0.2693E	+01 0.4869E+00 0.3509E+01 0.3302E+02
450 0.9386E+01 0.0000E+00 -0.1523E+02 0.2721E	+01 0.4810E+00 0.3538E+01 0.3299E+02
460 0.9525E+01 0.0000E+00 -0.1532E+02 0.2748E	+01 0.4753E+00 0.3567E+01 0.3296E+02
470 0.9664E+01 0.0000E+00 -0.1540E+02 0.2775E	+01 0.4698E+00 0.3595E+01 0.3294E+02
4/0 0.30046701 0.00006700 0.13406.02 0.27702	


```
4800.9801E+010.0000E+00 -0.1548E+020.2802E+010.4644E+000.3623E+010.3291E+024900.9937E+010.0000E+00 -0.1556E+020.2828E+010.4592E+000.3650E+010.3289E+025000.1007E+020.0000E+00 -0.1563E+020.2854E+010.4542E+000.3677E+010.3286E+025100.1021E+020.0000E+00 -0.1571E+020.2880E+010.4493E+000.3704E+010.3284E+025200.1034E+020.0000E+00 -0.1578E+020.2906E+010.4445E+000.3730E+010.3282E+025300.1047E+020.0000E+00 -0.1585E+020.2931E+010.4399E+000.3756E+010.3280E+025400.1060E+020.0000E+00 -0.1592E+020.2956E+010.4354E+000.3781E+010.3277E+025500.1073E+020.0000E+00 -0.1599E+020.2981E+010.4310E+000.3806E+010.3275E+025600.1086E+020.0000E+00 -0.1606E+020.3006E+010.4267E+000.3831E+010.3273E+025700.1099E+020.0000E+00 -0.1618E+020.3036E+010.4225E+000.3886E+010.3271E+025800.1112E+020.0000E+00 -0.1638E+020.3078E+010.4145E+000.3880E+010.3269E+025900.1125E+020.0000E+00 -0.1631E+020.3102E+010.4106E+000.3997E+010.3266E+026000.1137E+020.0000E+00 -0.1637E+020.3125E+010.4069E+000.3953E+010.3264E+026100.1150E+020.0000E+00 -0.1637E+020.3125E+010.4065E+000.3953E+01
```

PASSED GOARDESON O REGISTOR OF TOPPERSON OF SECTION OF SECTION

310 0.55321+01 0.50325+00 0.1109E+03 0.2757E+01 0.4393E+00 0.3725E+01 0.327E+01 0.327E+01 0.327E+01 0.327E+01 0.327E+01 0.327EE+01 0

SOO CITEZEEFOR C.SOSIE-OO C.119EFOI C.3134EFOI C.4265C-OC.1.A156EFOI C.3249EFO

#20 078775+01 088306+00 012016+02 03982401 0.40786+00 0.43686+01 032791-03 #30 070916+01 080926+00 0.12086+02 0.33476+01 0.40866+00 0.44676+01 03228407

FSRU Outfall 001 - Case 4 (Table 4)

```
DIL
                                            TEMP
                              QJ
          YJ
                 ZJ
                       RJ
NE XJ
 1 0.0000E+00 0.0000E+00 -0.5300E+01 0.7000E+00 0.2060E+01 0.1000E+01 0.4160E+02
 2 0.4858E-01 0.6325E-04 -0.5349E+01 0.7134E+00 0.2021E+01 0.1019E+01 0.4138E+02
10 0.4090E+00 0.2501E-02 -0.5707E+01 0.8139E+00 0.1767E+01 0.1161E+01 0.3994E+02
20 0.8059E+00 0.9238E-02 -0.6099E+01 0.9265E+00 0.1549E+01 0.1318E+01 0.3870E+02
 30 0.1160E+01 0.1889E-01-0.6445E+01 0.1029E+01 0.1391E+01 0.1461E+01 0.3781E+02
 40 0.1483E+01 0.3070E-01-0.6757E+01 0.1123E+01 0.1271E+01 0.1592E+01 0.3714E+02
 50 0.1782E+01 0.4420E-01 -0.7044E+01 0.1212E+01 0.1176E+01 0.1714E+01 0.3660E+02
 60 0.2060E+01 0.5906E-01-0.7308E+01 0.1296E+01 0.1097E+01 0.1829E+01 0.3616E+02
 70 O.2322E+01 O.7504E-01-0.7555E+01 O.1375E+01 O.1031E+01 O.1937E+01 O.3579E+02
 80 0.2570E+01 0.9198E-01-0.7786E+01 0.1452E+01 0.9751E+00 0.2040E+01 0.3548E+02
 90 0.2807E+01 0.1097E+00 -0.8004E+01 0.1525E+01 0.9263E+00 0.2139E+01 0.3521E+02
 100 0.3033E+01 0.1282E+00 -0.8211E+01 0.1596E+01 0.8833E+00 0.2234E+01 0.3497E+02
 110 0.3249E+01 0.1473E+00 -0.8407E+01 0.1664E+01 0.8452E+00 0.2325E+01 0.3476E+02
 120 0.3458E+01 0.1670E+00 -0.8594E+01 0.1731E+01 0.8111E+00 0.2413E+01 0.3457E+02
 130 0.3659E+01 0.1872E+00 -0.8772E+01 0.1795E+01 0.7803E+00 0.2498E+01 0.3440E+02
 140 0.3854E+01 0.2078E+00 -0.8943E+01 0.1858E+01 0.7524E+00 0.2581E+01 0.3425E+02
 150 0.4042E+01 0.2288E+00-0.9107E+01 0.1920E+01 0.7268E+00 0.2661E+01 0.3411E+02
 160 0.4225E+01 0.2502E+00-0.9265E+01 0.1980E+01 0.7034E+00 0.2739E+01 0.3398E+02
 170 0.4403E+01 0.2720E+00 -0.9417E+01 0.2039E+01 0.6818E+00 0.2815E+01 0.3386E+02
 180 0.4577E+01 0.2941E+00-0.9563E+01 0.2096E+01 0.6617E+00 0.2889E+01 0.3375E+02
 190 0.4746E+01 0.3164E+00 -0.9704E+01 0.2153E+01 0.6431E+00 0.2961E+01 0.3365E+02
 200 0.4911E+01 0.3391E+00 -0.9841E+01 0.2208E+01 0.6257E+00 0.3031E+01 0.3356E+02
 210 0.5072E+01 0.3620E+00 -0.9972E+01 0.2263E+01 0.6095E+00 0.3100E+01 0.3347E+02
 220 0.5230E+01 0.3852E+00 -0.1010E+02 0.2316E+01 0.5942E+00 0.3168E+01 0.3339E+02
 230 0.5384E+01 0.4085E+00 -0.1022E+02 0.2369E+01 0.5799E+00 0.3234E+01 0.3331E+02
 240 0.5536E+01 0.4321E+00 -0.1034E+02 0.2421E+01 0.5664E+00 0.3299E+01 0.3324E+02
 250 0.5684E+01 0.4559E+00 -0.1046E+02 0.2472E+01 0.5536E+00 0.3363E+01 0.3317E+02
 260 0.5830E+01 0.4799E+00 -0.1057E+02 0.2523E+01 0.5415E+00 0.3425E+01 0.3310E+02
  270 0.5973E+01 0.5040E+00 -0.1068E+02 0.2573E+01 0.5300E+00 0.3487E+01 0.3304E+02
  280 0.6113E+01 0.5284E+00 -0.1079E+02 0.2622E+01 0.5191E+00 0.3547E+01 0.3298E+02
  290 0.6252E+01 0.5529E+00 -0.1089E+02 0.2671E+01 0.5087E+00 0.3607E+01 0.3293E+02
  300 0.6388E+01 0.5775E+00 -0.1099E+02 0.2719E+01 0.4988E+00 0.3665E+01 0.3287E+02
  310 0.6522E+01 0.6023E+00 -0.1109E+02 0.2767E+01 0.4893E+00 0.3723E+01 0.3282E+02
  320 0.6653E+01 0.6272E+00 -0.1119E+02 0.2814E+01 0.4803E+00 0.3780E+01 0.3278E+02
  330 0.6783E+01 0.6523E+00 -0.1128E+02 0.2861E+01 0.4716E+00 0.3835E+01 0.3273E+02
  340 0.6911E+01 0.6775E+00 -0.1137E+02 0.2907E+01 0.4633E+00 0.3891E+01 0.3268E+02
  350 0.7038E+01 0.7028E+00 -0.1146E+02 0.2952E+01 0.4554E+00 0.3945E+01 0.3264E+02
  360 0.7162E+01 0.7282E+00 -0.1154E+02 0.2998E+01 0.4477E+00 0.3999E+01 0.3260E+02
  370 0.7285E+01 0.7538E+00 -0.1163E+02 0.3043E+01 0.4404E+00 0.4052E+01 0.3256E+02
   380 0.7406E+01 0.7794E+00 -0.1171E+02 0.3087E+01 0.4333E+00 0.4104E+01 0.3252E+02
   390 0.7526E+01 0.8052E+00 -0.1179E+02 0.3131E+01 0.4265E+00 0.4156E+01 0.3249E+02
   400 0.7644E+01 0.8310E+00 -0.1186E+02 0.3175E+01 0.4199E+00 0.4207E+01 0.3245E+02
   410 0.7761E+01 0.8570E+00 -0.1194E+02 0.3218E+01 0.4136E+00 0.4258E+01 0.3242E+02
   420 0.7877E+01 0.8830E+00 -0.1201E+02 0.3262E+01 0.4074E+00 0.4308E+01 0.3239E+02
   430 0.7991E+01 0.9092E+00 -0.1208E+02 0.3304E+01 0.4015E+00 0.4358E+01 0.3235E+02
   440 0.8104E+01 0.9354E+00 -0.1215E+02 0.3347E+01 0.3958E+00 0.4407E+01 0.3232E+02
   450 0.8215E+01 0.9617E+00 -0.1222E+02 0.3389E+01 0.3903E+00 0.4456E+01 0.3229E+02
   460 0.8326E+01 0.9881E+00-0.1229E+02 0.3431E+01 0.3849E+00 0.4504E+01 0.3226E+02
   470 0.8435E+01 0.1015E+01 -0.1235E+02 0.3472E+01 0.3797E+00 0.4551E+01 0.3224E+02
```



```
480 0.8543E+01 0.1041E+01-0.1242E+02 0.3514E+01 0.3747E+00 0.4599E+01 0.3221E+02
490 0.8650E+01 0.1068E+01 -0.1248E+02 0.3555E+01 0.3698E+00 0.4646E+01 0.3218E+02
500 0.8756E+01 0.1095E+01-0.1254E+02 0.3596E+01 0.3651E+00 0.4692E+01 0.3216E+02
510 0.8861E+01 0.1121E+01 0.1260E+02 0.3636E+01 0.3605E+00 0.4738E+01 0.3213E+02
520 0.8965E+01 0.1148E+01-0.1266E+02 0.3677E+01 0.3560E+00 0.4784E+01 0.3211E+02
530 0.9068E+01 0.1175E+01-0.1271E+02 0.3717E+01 0.3517E+00 0.4830E+01 0.3208E+02
540 0.9170E+01 0.1202E+01-0.1277E+02 0.3757E+01 0.3475E+00 0.4875E+01 0.3206E+02
550 0.9271E+01 0.1229E+01-0.1282E+02 0.3797E+01 0.3433E+00 0.4920E+01 0.3204E+02
560 0.9371E+01 0.1256E+01-0.1287E+02 0.3836E+01 0.3394E+00 0.4965E+01 0.3202E+02
570 0.9470E+01 0.1283E+01-0.1292E+02 0.3876E+01 0.3355E+00 0.5009E+01 0.3200E+02
580 0.9569E+01 0.1311E+01-0.1297E+02 0.3915E+01 0.3317E+00 0.5053E+01 0.3197E+02
590 0.9666E+01 0.1338E+01-0.1302E+02 0.3954E+01 0.3280E+00 0.5097E+01 0.3195E+02
600 0.9763E+01 0.1365E+01 -0.1307E+02 0.3992E+01 0.3244E+00 0.5141E+01 0.3193E+02
610 0.9859E+01 0.1393E+01 -0.1311E+02 0.4031E+01 0.3209E+00 0.5184E+01 0.3191E+02
620 0.9954E+01 0.1420E+01 -0.1316E+02 0.4070E+01 0.3175E+00 0.5227E+01 0.3190E+02
630 0.1005E+02 0.1448E+01-0.1320E+02 0.4108E+01 0.3142E+00 0.5270E+01 0.3188E+02
640 0.1014E+02 0.1475E+01 -0.1324E+02 0.4146E+01 0.3109E+00 0.5313E+01 0.3186E+02
650 0.1023E+02 0.1503E+01-0.1328E+02 0.4184E+01 0.3078E+00 0.5356E+01 0.3184E+02
660 0.1033E+02 0.1530E+01 -0.1332E+02 0.4222E+01 0.3047E+00 0.5398E+01 0.3182E+02
670 0.1042E+02 0.1558E+01-0.1336E+02 0.4259E+01 0.3016E+00 0.5440E+01 0.3181E+02
680 0.1051E+02 0.1586E+01 -0.1340E+02 0.4297E+01 0.2987E+00 0.5483E+01 0.3179E+02
690 0.1060E+02 0.1614E+01-0.1343E+02 0.4334E+01 0.2958E+00 0.5525E+01 0.3177E+02
700 0.1069E+02 0.1642E+01 -0.1347E+02 0.4371E+01 0.2930E+00 0.5566E+01 0.3176E+02
710 0.1078E+02 0.1669E+01 -0.1350E+02 0.4408E+01 0.2903E+00 0.5608E+01 0.3174E+02
720 0.1086E+02 0.1697E+01 -0.1354E+02 0.4445E+01 0.2876E+00 0.5650E+01 0.3172E+02
730 0.1095E+02 0.1725E+01-0.1357E+02 0.4482E+01 0.2850E+00 0.5691E+01 0.3171E+02
740 0.1104E+02 0.1753E+01 -0.1360E+02 0.4518E+01 0.2824E+00 0.5733E+01 0.3169E+02
750 0.1112E+02 0.1782E+01 -0.1363E+02 0.4555E+01 0.2799E+00 0.5774E+01 0.3168E+02
760 0.1121E+02 0.1810E+01 -0.1366E+02 0.4591E+01 0.2775E+00 0.5815E+01 0.3166E+02
770 0.1129E+02 0.1838E+01 -0.1369E+02 0.4627E+01 0.2751E+00 0.5857E+01 0.3165E+02
780 0.1138E+02 0.1866E+01 -0.1372E+02 0.4663E+01 0.2728E+00 0.5898E+01 0.3163E+02
790 0.1146E+02 0.1894E+01 -0.1375E+02 0.4699E+01 0.2705E+00 0.5939E+01 0.3162E+02
800 0.1154E+02 0.1923E+01 -0.1377E+02 0.4735E+01 0.2683E+00 0.5980E+01 0.3161E+02
810 0.1163E+02 0.1951E+01 -0.1380E+02 0.4771E+01 0.2661E+00 0.6021E+01 0.3159E+02
820 0.1171E+02 0.1979E+01-0.1382E+02 0.4806E+01 0.2640E+00 0.6062E+01 0.3158E+02
830 0.1179E+02 0.2008E+01 -0.1384E+02 0.4841E+01 0.2619E+00 0.6103E+01 0.3157E+02
840 0.1187E+02 0.2036E+01 -0.1387E+02 0.4877E+01 0.2598E+00 0.6143E+01 0.3155E+02
850 0.1195E+02 0.2064E+01 -0.1389E+02 0.4912E+01 0.2578E+00 0.6184E+01 0.3154E+02
860 0.1203E+02 0.2093E+01 -0.1391E+02 0.4946E+01 0.2559E+00 0.6225E+01 0.3153E+02
870 0.1211E+02 0.2122E+01 -0.1393E+02 0.4981E+01 0.2540E+00 0.6266E+01 0.3152E+02
880 0.1219E+02 0.2150E+01 -0.1395E+02 0.5016E+01 0.2521E+00 0.6306E+01 0.3150E+02
890 0.1227E+02 0.2179E+01 -0.1397E+02 0.5050E+01 0.2503E+00 0.6347E+01 0.3149E+02
900 0.1235E+02 0.2207E+01-0.1399E+02 0.5085E+01 0.2485E+00 0.6388E+01 0.3148E+02
910 0.1242E+02 0.2236E+01 -0.1400E+02 0.5119E+01 0.2468E+00 0.6428E+01 0.3147E+02
920 0.1250E+02 0.2265E+01 -0.1402E+02 0.5153E+01 0.2450E+00 0.6469E+01 0.3145E+02
930 0.1258E+02 0.2293E+01 -0.1403E+02 0.5187E+01 0.2434E+00 0.6510E+01 0.3144E+02
940 0.1265E+02 0.2322E+01-0.1405E+02 0.5220E+01 0.2417E+00 0.6550E+01 0.3143E+02
943 0.1267E+02 0.2331E+01 -0.1405E+02 0.5228E+01 0.2414E+00 0.6559E+01 0.3143E+02
```


FSRU Outfall 001 - Case 5 (Table 4)

QJ DIL RJ ZJ 1 0.0000E+00 0.0000E+00-0.6350E+01 0.7000E+00 0.2060E+01 0.1000E+01 0.4160E+02 2 0.4858E-01 0.6325E-04 -0.6399E+01 0.7134E+00 0.2021E+01 0.1019E+01 0.4138E+02 10 0.4090E+00 0.2501E-02 -0.6757E+01 0.8139E+00 0.1767E+01 0.1161E+01 0.3994E+02 20 0.8059E+00 0.9238E-02 -0.7149E+01 0.9265E+00 0.1549E+01 0.1318E+01 0.3870E+02 30 0.1160E+01 0.1889E-01-0.7495E+01 0.1029E+01 0.1391E+01 0.1461E+01 0.3781E+02 40 0.1483E+01 0.3070E-01-0.7807E+01 0.1123E+01 0.1271E+01 0.1592E+01 0.3714E+02 50 0.1782E+01 0.4420E-01-0.8094E+01 0.1212E+01 0.1176E+01 0.1714E+01 0.3660E+02 60 0.2060E+01 0.5906E-01-0.8358E+01 0.1296E+01 0.1097E+01 0.1829E+01 0.3616E+02 70 0.2322E+01 0.7504E-01-0.8605E+01 0.1375E+01 0.1031E+01 0.1937E+01 0.3579E+02 80 0.2570E+01 0.9198E-01-0.8836E+01 0.1452E+01 0.9751E+00 0.2040E+01 0.3548E+02 90 0.2807E+01 0.1097E+00-0.9054E+01 0.1525E+01 0.9263E+00 0.2139E+01 0.3521E+02 100 0.3033E+01 0.1282E+00 -0.9261E+01 0.1596E+01 0.8833E+00 0.2234E+01 0.3497E+02 110 0.3249E+01 0.1473E+00 -0.9457E+01 0.1664E+01 0.8452E+00 0.2325E+01 0.3476E+02 120 0.3458E+01 0.1670E+00 -0.9644E+01 0.1731E+01 0.8111E+00 0.2413E+01 0.3457E+02 130 0.3659E+01 0.1872E+00 -0.9822E+01 0.1795E+01 0.7803E+00 0.2498E+01 0.3440E+02 140 0.3854E+01 0.2078E+00 -0.9993E+01 0.1858E+01 0.7524E+00 0.2581E+01 0.3425E+02 150 0.4042E+01 0.2288E+00-0.1016E+02 0.1920E+01 0.7268E+00 0.2661E+01 0.3411E+02 160 0.4225E+01 0.2502E+00 -0.1031E+02 0.1980E+01 0.7034E+00 0.2739E+01 0.3398E+02 170 0.4403E+01 0.2720E+00 -0.1047E+02 0.2039E+01 0.6818E+00 0.2815E+01 0.3386E+02 180 0.4577E+01 0.2941E+00 -0.1061E+02 0.2096E+01 0.6617E+00 0.2889E+01 0.3375E+02 190 0.4746E+01 0.3164E+00 -0.1075E+02 0.2153E+01 0.6431E+00 0.2961E+01 0.3365E+02 200 0.4911E+01 0.3391E+00 -0.1089E+02 0.2208E+01 0.6257E+00 0.3031E+01 0.3356E+02 210 0.5072E+01 0.3620E+00 -0.1102E+02 0.2263E+01 0.6095E+00 0.3100E+01 0.3347E+02 220 0.5230E+01 0.3852E+00 -0.1115E+02 0.2316E+01 0.5942E+00 0.3168E+01 0.3339E+02 230 0.5384E+01 0.4085E+00 -0.1127E+02 0.2369E+01 0.5799E+00 0.3234E+01 0.3331E+02 240 0.5536E+01 0.4321E+00 -0.1139E+02 0.2421E+01 0.5664E+00 0.3299E+01 0.3324E+02 250 0.5684E+01 0.4559E+00 -0.1151E+02 0.2472E+01 0.5536E+00 0.3363E+01 0.3317E+02 260 0.5830E+01 0.4799E+00 -0.1162E+02 0.2523E+01 0.5415E+00 0.3425E+01 0.3310E+02 270 0.5973E+01 0.5040E+00 -0.1173E+02 0.2573E+01 0.5300E+00 0.3487E+01 0.3304E+02 280 0.6113E+01 0.5284E+00 -0.1184E+02 0.2622E+01 0.5191E+00 0.3547E+01 0.3298E+02 290 0.6252E+01 0.5529E+00 -0.1194E+02 0.2671E+01 0.5087E+00 0.3607E+01 0.3293E+02 300 0.6388E+01 0.5775E+00 -0.1204E+02 0.2719E+01 0.4988E+00 0.3665E+01 0.3287E+02 310 0.6522E+01 0.6023E+00 -0.1214E+02 0.2767E+01 0.4893E+00 0.3723E+01 0.3282E+02 320 0.6653E+01 0.6272E+00 -0.1224E+02 0.2814E+01 0.4803E+00 0.3780E+01 0.3278E+02 330 0.6783E+01 0.6523E+00 -0.1233E+02 0.2861E+01 0.4716E+00 0.3835E+01 0.3273E+02 340 0.6911E+01 0.6775E+00 -0.1242E+02 0.2907E+01 0.4633E+00 0.3891E+01 0.3268E+02 350 0.7038E+01 0.7028E+00 -0.1251E+02 0.2952E+01 0.4554E+00 0.3945E+01 0.3264E+02 360 0.7162E+01 0.7282E+00 -0.1259E+02 0.2998E+01 0.4477E+00 0.3999E+01 0.3260E+02 370 0.7285E+01 0.7538E+00 -0.1268E+02 0.3043E+01 0.4404E+00 0.4052E+01 0.3256E+02 380 0.7406E+01 0.7794E+00 -0.1276E+02 0.3087E+01 0.4333E+00 0.4104E+01 0.3252E+02 390 0.7526E+01 0.8052E+00 -0.1284E+02 0.3131E+01 0.4265E+00 0.4156E+01 0.3249E+02 400 0.7644E+01 0.8310E+00 -0.1291E+02 0.3175E+01 0.4199E+00 0.4207E+01 0.3245E+02 410 0.7761E+01 0.8570E+00 -0.1299E+02 0.3218E+01 0.4136E+00 0.4258E+01 0.3242E+02 420 0.7877E+01 0.8830E+00 -0.1306E+02 0.3262E+01 0.4074E+00 0.4308E+01 0.3239E+02 430 0.7991E+01 0.9092E+00 -0.1313E+02 0.3304E+01 0.4015E+00 0.4358E+01 0.3235E+02 440 0.8104E+01 0.9354E+00 -0.1320E+02 0.3347E+01 0.3958E+00 0.4407E+01 0.3232E+02 450 0.8215E+01 0.9617E+00 -0.1327E+02 0.3389E+01 0.3903E+00 0.4456E+01 0.3229E+02 460 0.8326E+01 0.9881E+00 -0.1334E+02 0.3431E+01 0.3849E+00 0.4504E+01 0.3226E+02 470 0.8435E+01 0.1015E+01 -0.1340E+02 0.3472E+01 0.3797E+00 0.4551E+01 0.3224E+02


```
480 0.8543E+01 0.1041E+01-0.1347E+02 0.3514E+01 0.3747E+00 0.4599E+01 0.3221E+02
490 0.8650E+01 0.1068E+01-0.1353E+02 0.3555E+01 0.3698E+00 0.4646E+01 0.3218E+02
500 0.8756E+01 0.1095E+01 -0.1359E+02 0.3596E+01 0.3651E+00 0.4692E+01 0.3216E+02
510 0.8861E+01 0.1121E+01-0.1365E+02 0.3636E+01 0.3605E+00 0.4738E+01 0.3213E+02
520 0.8965E+01 0.1148E+01-0.1371E+02 0.3677E+01 0.3560E+00 0.4784E+01 0.3211E+02
530 0.9068E+01 0.1175E+01 -0.1376E+02 0.3717E+01 0.3517E+00 0.4830E+01 0.3208E+02
540 0.9170E+01 0.1202E+01 -0.1382E+02 0.3757E+01 0.3475E+00 0.4875E+01 0.3206E+02
550 0.9271E+01 0.1229E+01-0.1387E+02 0.3797E+01 0.3433E+00 0.4920E+01 0.3204E+02
560 0.9371E+01 0.1256E+01 -0.1392E+02 0.3836E+01 0.3394E+00 0.4965E+01 0.3202E+02
570 0.9470E+01 0.1283E+01 -0.1397E+02 0.3876E+01 0.3355E+00 0.5009E+01 0.3200E+02
580 0.9569E+01 0.1311E+01-0.1402E+02 0.3915E+01 0.3317E+00 0.5053E+01 0.3197E+02
590 0.9666E+01 0.1338E+01 -0.1407E+02 0.3954E+01 0.3280E+00 0.5097E+01 0.3195E+02
600 0.9763E+01 0.1365E+01 -0.1412E+02 0.3992E+01 0.3244E+00 0.5141E+01 0.3193E+02
610 0.9859E+01 0.1393E+01 -0.1416E+02 0.4031E+01 0.3209E+00 0.5184E+01 0.3191E+02
620 0.9954E+01 0.1420E+01 -0.1421E+02 0.4070E+01 0.3175E+00 0.5227E+01 0.3190E+02
630 0.1005E+02 0.1448E+01 -0.1425E+02 0.4108E+01 0.3142E+00 0.5270E+01 0.3188E+02
640 0.1014E+02 0.1475E+01 -0.1429E+02 0.4146E+01 0.3109E+00 0.5313E+01 0.3186E+02
650 0.1023E+02 0.1503E+01 -0.1433E+02 0.4184E+01 0.3078E+00 0.5356E+01 0.3184E+02
660 0.1033E+02 0.1530E+01 -0.1437E+02 0.4222E+01 0.3047E+00 0.5398E+01 0.3182E+02
670 0.1042E+02 0.1558E+01 -0.1441E+02 0.4259E+01 0.3016E+00 0.5440E+01 0.3181E+02
680 0.1051E+02 0.1586E+01 -0.1445E+02 0.4297E+01 0.2987E+00 0.5483E+01 0.3179E+02
690 0.1060E+02 0.1614E+01 -0.1448E+02 0.4334E+01 0.2958E+00 0.5525E+01 0.3177E+02
700 0.1069E+02 0.1642E+01 -0.1452E+02 0.4371E+01 0.2930E+00 0.5566E+01 0.3176E+02
710 0.1078E+02 0.1669E+01 -0.1455E+02 0.4408E+01 0.2903E+00 0.5608E+01 0.3174E+02
720 0.1086E+02 0.1697E+01 -0.1459E+02 0.4445E+01 0.2876E+00 0.5650E+01 0.3172E+02
730 0.1095E+02 0.1725E+01 -0.1462E+02 0.4482E+01 0.2850E+00 0.5691E+01 0.3171E+02
740 0.1104E+02 0.1753E+01 -0.1465E+02 0.4518E+01 0.2824E+00 0.5733E+01 0.3169E+02
750 0.1112E+02 0.1782E+01 -0.1468E+02 0.4555E+01 0.2799E+00 0.5774E+01 0.3168E+02
760 0.1121E+02 0.1810E+01 -0.1471E+02 0.4591E+01 0.2775E+00 0.5815E+01 0.3166E+02
770 0.1129E+02 0.1838E+01 -0.1474E+02 0.4627E+01 0.2751E+00 0.5857E+01 0.3165E+02
777 0.1135E+02 0.1858E+01 -0.1476E+02 0.4652E+01 0.2735E+00 0.5885E+01 0.3164E+02
           THE OURSTREADT O SDAOR+OO O 12788+02 DISTREADT OURSONEADD OURSEADT OURSONE-OF
```

\$10 0.65225.01 0.60238.00 0.33195.02 8.77676.02 0.48938.00 0.37225.01 0.52827.02

348 0.6911E+01 0.6775E+00 0.1347E+02 0.2957E+01 0.4653E+00 0.38915+01 0.3268E+02

FSRU Outfall 001 – Case 6 (Table 4)

NE XJ YJ ZJ RJ QJ DIL TEMP
1 0.0000E+00 0.0000E+00-0.7400E+01 0.7000E+00 0.2060E+01 0.1000E+01 0.4160E+02
2 0.4858E-01 0.6325E-04 -0.7449E+01 0.7134E+00 0.2021E+01 0.1019E+01 0.4138E+02
10 0.4090E+00 0.2501E-02 -0.7807E+01 0.8139E+00 0.1767E+01 0.1161E+01 0.3994E+02
20 0.8059E+00 0.9238E-02 -0.8199E+01 0.9265E+00 0.1549E+01 0.1318E+01 0.3870E+02
30 0.1160E+01 0.1889E-01 -0.8545E+01 0.1029E+01 0.1391E+01 0.1461E+01 0.3781E+02
40 0.1483E+01 0.3070E-01 -0.8857E+01 0.1123E+01 0.1271E+01 0.1592E+01 0.3714E+02
50 0.1782E+01 0.4420E-01 -0.9144E+01 0.1212E+01 0.1176E+01 0.1714E+01 0.3660E+02
60 0.2060E+01 0.5906E-01 -0.9408E+01 0.1296E+01 0.1097E+01 0.1829E+01 0.3616E+02
70 0.2322E+01 0.7504E-01 -0.9655E+01 0.1375E+01 0.1031E+01 0.1937E+01 0.3579E+02
80 0.2570E+01 0.9198E-01 -0.9886E+01 0.1452E+01 0.9751E+00 0.2040E+01 0.3548E+02
90 0.2807E+01 0.1097E+00 -0.1010E+02 0.1525E+01 0.9263E+00 0.2139E+01 0.3521E+02
100 0.3033E+01 0.1282E+00 -0.1031E+02 0.1525E+01 0.8833E+00 0.2234E+01 0.3497E+02
110 0.3249E+01 0.1473E+00 -0.1051E+02 0.1664E+01 0.8452E+00 0.2325E+01 0.3476E+02
110 0.3249E+01 0.1473E+00 -0.1051E+02 0.1064E+01 0.6452E+00 0.2325E+01 0.3457E+02
120 0.3458E+01 0.1670E+00 -0.1069E+02 0.1731E+01 0.8111E+00 0.2413E+01 0.3457E+02 120 0.3458E+01 0.3457E+02 0.1735E+01 0.7803E+00 0.2498E+01 0.3440E+02
130 0.3659E+01 0.1872E+00 -0.1087E+02 0.1795E+01 0.7803E+00 0.2498E+01 0.3440E+02
140 0.3854E+01 0.2078E+00 -0.1104E+02 0.1858E+01 0.7524E+00 0.2581E+01 0.3425E+02
150 0.4042E+01 0.2288E+00 -0.1121E+02 0.1920E+01 0.7268E+00 0.2661E+01 0.3411E+02
160 0.4225E+01 0.2502E+00 -0.1136E+02 0.1980E+01 0.7034E+00 0.2739E+01 0.3398E+02
170 0.4403E+01 0.2720E+00 -0.1152E+02 0.2039E+01 0.6818E+00 0.2815E+01 0.3386E+02
180 0.4577E+01 0.2941E+00 -0.1166E+02 0.2096E+01 0.6617E+00 0.2889E+01 0.3375E+02
190 0.4746E+01 0.3164E+00 -0.1180E+02 0.2153E+01 0.6431E+00 0.2961E+01 0.3365E+02
200 0.4911E+01 0.3391E+00 -0.1194E+02 0.2208E+01 0.6257E+00 0.3031E+01 0.3356E+02
210 0.5072E+01 0.3620E+00 -0.1207E+02 0.2263E+01 0.6095E+00 0.3100E+01 0.3347E+02
220 0.5230E+01 0.3852E+00 -0.1220E+02 0.2316E+01 0.5942E+00 0.3168E+01 0.3339E+02
230 0 5384F+01 0.4085F+00 -0.1232E+02 0.2369E+01 0.5799E+00 0.3234E+01 0.3331E+02
240 0 5536F+01 0.4321F+00 -0.1244F+02 0.2421F+01 0.5664F+00 0.3299F+01 0.3324F+02
250 0 5684F+01 0.4559E+00 -0.1256E+02 0.2472E+01 0.5536E+00 0.3363E+01 0.3317E+02
260 0 5830F+01 0.4799E+00 -0.1267E+02 0.2523E+01 0.5415E+00 0.3425E+01 0.3310E+02
270 0 5973F+01 0 5040E+00 -0.1278E+02 0.2573E+01 0.5300E+00 0.3487E+01 0.3304E+02
380 0.6113E+01 0.5284E+00 -0.1289E+02 0.2622E+01 0.5191E+00 0.3547E+01 0.3298E+02
290 0.6252F+01 0.5529E+00 -0.1299E+02 0.2671E+01 0.5087E+00 0.3607E+01 0.3293E+02
200 0 6388E+01 0 5775E+00 -0.1309E+02 0.2719E+01 0.4988E+00 0.3665E+01 0.3287E+02
310 0.6522F+01 0.6023E+00 -0.1319E+02 0.2767E+01 0.4893E+00 0.3723E+01 0.3282E+02
320 0 6653E+01 0 6272E+00 -0.1329E+02 0.2814E+01 0.4803E+00 0.3780E+01 0.3278E+02
230 0.6783E+01 0.6523E+00 -0.1338E+02 0.2861E+01 0.4716E+00 0.3835E+01 0.3273E+02
240 0.6911E+01 0.6775E+00 -0.1347E+02 0.2907E+01 0.4633E+00 0.3891E+01 0.3268E+02
350 0.70385±01 0.70285±00 -0.1356E+02 0.2952E+01 0.4554E+00 0.3945E+01 0.3264E+02
360 0.7162E+01 0.7282E+00 -0.1364E+02 0.2998E+01 0.4477E+00 0.3999E+01 0.3260E+02
370 0.7285E+01 0.7538E+00 -0.1373E+02 0.3043E+01 0.4404E+00 0.4052E+01 0.3256E+02
380 0.7406E+01 0.7794E+00 -0.1381E+02 0.3087E+01 0.4333E+00 0.4104E+01 0.3252E+02
390 0.7526E+01 0.8052E+00 -0.1389E+02 0.3131E+01 0.4265E+00 0.4156E+01 0.3249E+02
400 0.7644E+01 0.8310E+00 -0.1396E+02 0.3175E+01 0.4199E+00 0.4207E+01 0.3245E+02
400 0.761E+01 0.8570E+00 -0.1404E+02 0.3218E+01 0.4136E+00 0.4258E+01 0.3242E+02
410 0.7761E+01 0.8570E+00 -0.1401E+02 0.3262E+01 0.4074E+00 0.4308E+01 0.3239E+02 420 0.7877E+01 0.8830E+00 -0.1411E+02 0.3262E+01 0.4074E+00 0.4308E+01 0.3239E+02
420 0.7877E+01 0.8830E+00 -0.141E+02 0.3232E+01 0.4015E+00 0.4358E+01 0.3235E+02 430 0.7991E+01 0.9092E+00 -0.1418E+02 0.3304E+01 0.4015E+00 0.4358E+01 0.3235E+02
430 0.7991E+01 0.9092E+00 -0.1418E+02 0.3347E+01 0.3958E+00 0.4407E+01 0.3232E+02 440 0.8104E+01 0.9354E+00 -0.1425E+02 0.3347E+01 0.3958E+00 0.4407E+01 0.3232E+02
440 0.8104E+01 0.9354E+00 -0.1425E+02 0.3389E+01 0.3903E+00 0.4456E+01 0.3229E+02 450 0.8215E+01 0.9617E+00 -0.1432E+02 0.3389E+01 0.3903E+00 0.4456E+01 0.3229E+02
450 0.8215E+01 0.9617E+00 -0.1432E+02 0.3431E+01 0.3849E+00 0.4504E+01 0.3226E+02 460 0.8326E+01 0.9881E+00 -0.1439E+02 0.3431E+01 0.3849E+00 0.4504E+01 0.3226E+02
460 0.8326E+01 0.9881E+00 -0.1435E+02 0.3431E+01 0.3797E+00 0.4551E+01 0.3224E+02 470 0.8435E+01 0.1015E+01 -0.1445E+02 0.3472E+01 0.3797E+00 0.4551E+01 0.3224E+02
470 0.8435E+01 0.1015E+01 -0.1443E+02 0.3472E+01 0.3737E+03 0.3532E+01 0.3022


```
480 0.8543E+01 0.1041E+01-0.1452E+02 0.3514E+01 0.3747E+00 0.4599E+01 0.3221E+02
490 0.8650E+01 0.1068E+01 -0.1458E+02 0.3555E+01 0.3698E+00 0.4646E+01 0.3218E+02
500 0.8756E+01 0.1095E+01 -0.1464E+02 0.3596E+01 0.3651E+00 0.4692E+01 0.3216E+02
510 0.8861E+01 0.1121E+01 -0.1470E+02 0.3636E+01 0.3605E+00 0.4738E+01 0.3213E+02
520 0.8965E+01 0.1148E+01 -0.1476E+02 0.3677E+01 0.3560E+00 0.4784E+01 0.3211E+02
530 0.9068E+01 0.1175E+01 -0.1481E+02 0.3717E+01 0.3517E+00 0.4830E+01 0.3208E+02
540 0.9170E+01 0.1202E+01 -0.1487E+02 0.3757E+01 0.3475E+00 0.4875E+01 0.3206E+02
550 0.9271E+01 0.1229E+01-0.1492E+02 0.3797E+01 0.3433E+00 0.4920E+01 0.3204E+02
560 0.9371E+01 0.1256E+01 -0.1497E+02 0.3836E+01 0.3394E+00 0.4965E+01 0.3202E+02
570 0.9470E+01 0.1283E+01 -0.1502E+02 0.3876E+01 0.3355E+00 0.5009E+01 0.3200E+02
580 0.9569E+01 0.1311E+01-0.1507E+02 0.3915E+01 0.3317E+00 0.5053E+01 0.3197E+02
590 0.9666E+01 0.1338E+01-0.1512E+02 0.3954E+01 0.3280E+00 0.5097E+01 0.3195E+02
600 0.9763E+01 0.1365E+01 -0.1517E+02 0.3992E+01 0.3244E+00 0.5141E+01 0.3193E+02
610 0.9859E+01 0.1393E+01 -0.1521E+02 0.4031E+01 0.3209E+00 0.5184E+01 0.3191E+02
620 0.9954E+01 0.1420E+01 -0.1526E+02 0.4070E+01 0.3175E+00 0.5227E+01 0.3190E+02
630 0.1005E+02 0.1448E+01 -0.1530E+02 0.4108E+01 0.3142E+00 0.5270E+01 0.3188E+02
640 0.1014E+02 0.1475E+01 -0.1534E+02 0.4146E+01 0.3109E+00 0.5313E+01 0.3186E+02
646 0.1020E+02 0.1492E+01 -0.1537E+02 0.4166E+01 0.3092E+00 0.5335E+01 0.3185E+02
                      T1310(901 0.0000000 00.0373(-01 0.03900-00 0.136000 0 2356000)
```

270 0.18585-01 0.0000E+00 0.5005E+01 0.6055E+08 0.1329E+00 0.4765E+01 0.3213E+01

320 0.196AE+01 0.0000E+00-0.0588E+01 0.866AE+00 0.1318E+00 0.3638E+01 0.3143E+02

140 0.20355+01.0.000005+00 0.44016+01.0.70507+00.0.13095+00.0.031345+01.0.31516+02

ADD GT1228+G1 GT00001+00-GT100+G1 GT028+G0 GT1284+G0 GT2845+G0 GT0728+G1 GT11E+G1 ADD GT127E+G1 GT00002+G0 GT818E+G1 GT028E+G0 GT1284E+G0 GT284E+G1 GT074E+G1 GT17E+G1 ADD GT127E+G1 GT00002+G0 GT818E+G1 GT788E+G0 GT788E+G0 GT78E+G1 GT074E+G1

TAN O'SSERTO TO SEED OF STREET O BENESTED O'SSERVED O'SSERVED O'SSERVED O'S SERVED O'S S

FSRU Outfall 002 - Case 1 (Table 5)

DIL TEMP QJ NE XJ · YJ RJ ZJ 1 0.0000E+00 0.0000E+00 -0.6300E+01 0.2000E+00 0.2600E+00 0.1000E+01 0.4160E+02 2 0.1397E-01 0.0000E+00 -0.6314E+01 0.2034E+00 0.2546E+00 0.1013E+01 0.4145E+02 10 0.1204E+00 0.0000E+00 -0.6410E+01 0.2284E+00 0.2191E+00 0.1099E+01 0.4052E+02 20 0.2438E+00 0.0000E+00 -0.6503E+01 0.2557E+00 0.1879E+00 0.1182E+01 0.3975E+02 30 0.3599E+00 0.0000E+00 -0.6571E+01 0.2797E+00 0.1656E+00 0.1246E+01 0.3923E+02 40 0.4707E+00 0.0000E+00-0.6618E+01 0.3010E+00 0.1493E+00 0.1302E+01 0.3882E+02 50 0.5768E+00 0.0000E+00 -0.6644E+01 0.3201E+00 0.1376E+00 0.1357E+01 0.3844E+02 60 0.6786E+00 0.0000E+00 -0.6653E+01 0.3372E+00 0.1296E+00 0.1419E+01 0.3806E+02 70 0.7756E+00 0.0000E+00-0.6646E+01 0.3525E+00 0.1247E+00 0.1492E+01 0.3764E+02 80 0.8675E+00 0.0000E+00 -0.6623E+01 0.3664E+00 0.1221E+00 0.1579E+01 0.3720E+02 90 0.9541E+00 0.0000E+00 -0.6588E+01 0.3793E+00 0.1213E+00 0.1681E+01 0.3674E+02 100 0.1035E+01 0.0000E+00 -0.6542E+01 0.3915E+00 0.1216E+00 0.1796E+01 0.3628E+02 110 0.1111E+01 0.0000E+00 -0.6487E+01 0.4034E+00 0.1226E+00 0.1923E+01 0.3584E+02 120 0.1182E+01 0.0000E+00 -0.6424E+01 0.4152E+00 0.1240E+00 0.2059E+01 0.3543E+02 130 0.1248E+01 0.0000E+00 -0.6354E+01 0.4270E+00 0.1254E+00 0.2204E+01 0.3504E+02 140 0.1310E+01 0.0000E+00 -0.6279E+01 0.4390E+00 0.1268E+00 0.2356E+01 0.3469E+02 150 0.1368E+01 0.0000E+00 -0.6200E+01 0.4512E+00 0.1281E+00 0.2515E+01 0.3437E+02 160 0.1422E+01 0.0000E+00 -0.6117E+01 0.4636E+00 0.1293E+00 0.2679E+01 0.3408E+02 170 0.1473E+01 0.0000E+00 -0.6032E+01 0.4762E+00 0.1302E+00 0.2848E+01 0.3381E+02 180 0.1521E+01 0.0000E+00 -0.5943E+01 0.4890E+00 0.1311E+00 0.3023E+01 0.3357E+02 190 0.1567E+01 0.0000E+00 -0.5853E+01 0.5020E+00 0.1317E+00 0.3201E+01 0.3335E+02 200 0.1609E+01 0.0000E+00 -0.5761E+01 0.5151E+00 0.1323E+00 0.3384E+01 0.3315E+02 210 0.1650E+01 0.0000E+00 -0.5667E+01 0.5283E+00 0.1326E+00 0.3571E+01 0.3296E+02 220 0.1689E+01 0.0000E+00 -0.5573E+01 0.5417E+00 0.1329E+00 0.3762E+01 0.3279E+02 230 0.1725E+01 0.0000E+00 -0.5477E+01 0.5551E+00 0.1331E+00 0.3956E+01 0.3263E+02 240 0.1760E+01 0.0000E+00 -0.5381E+01 0.5686E+00 0.1332E+00 0.4154E+01 0.3249E+02 250 0.1793E+01 0.0000E+00 -0.5284E+01 0.5822E+00 0.1331E+00 0.4354E+01 0.3236E+02 260 0.1825E+01 0.0000E+00 -0.5187E+01 0.5959E+00 0.1331E+00 0.4558E+01 0.3223E+02 270 0.1855E+01 0.0000E+00 -0.5089E+01 0.6095E+00 0.1329E+00 0.4765E+01 0.3212E+02 280 0.1884E+01 0.0000E+00 -0.4991E+01 0.6232E+00 0.1327E+00 0.4975E+01 0.3201E+02 290 0.1912E+01 0.0000E+00 -0.4893E+01 0.6370E+00 0.1325E+00 0.5187E+01 0.3191E+02 300 0.1938E+01 0.0000E+00 -0.4794E+01 0.6507E+00 0.1322E+00 0.5402E+01 0.3182E+02 310 0.1964E+01 0.0000E+00 -0.4696E+01 0.6644E+00 0.1319E+00 0.5620E+01 0.3174E+02 320 0.1989E+01 0.0000E+00 -0.4598E+01 0.6782E+00 0.1316E+00 0.5840E+01 0.3165E+02 330 0.2012E+01 0.0000E+00 -0.4500E+01 0.6919E+00 0.1312E+00 0.6063E+01 0.3158E+02 340 0.2035E+01 0.0000E+00 -0.4401E+01 0.7056E+00 0.1309E+00 0.6288E+01 0.3151E+02 350 0.2057E+01 0.0000E+00 -0.4303E+01 0.7193E+00 0.1305E+00 0.6515E+01 0.3144E+02 360 0.2079E+01 0.0000E+00 -0.4206E+01 0.7330E+00 0.1301E+00 0.6744E+01 0.3138E+02 370 0.2099E+01 0.0000E+00 -0.4108E+01 0.7467E+00 0.1297E+00 0.6976E+01 0.3132E+02 380 0.2119E+01 0.0000E+00 -0.4010E+01 0.7603E+00 0.1292E+00 0.7209E+01 0.3126E+02 390 0.2138E+01 0.0000E+00 -0.3913E+01 0.7739E+00 0.1288E+00 0.7445E+01 0.3121E+02 400 0.2157E+01 0.0000E+00-0.3816E+01 0.7875E+00 0.1284E+00 0.7682E+01 0.3116E+02 410 0.2175E+01 0.0000E+00 -0.3719E+01 0.8010E+00 0.1279E+00 0.7922E+01 0.3111E+02 420 0.2193E+01 0.0000E+00 -0.3622E+01 0.8146E+00 0.1275E+00 0.8163E+01 0.3107E+02 430 0.2210E+01 0.0000E+00 -0.3526E+01 0.8280E+00 0.1270E+00 0.8407E+01 0.3103E+02 440 0.2226E+01 0.0000E+00 -0.3430E+01 0.8415E+00 0.1266E+00 0.8652E+01 0.3099E+02 450 0.2242E+01 0.0000E+00 -0.3334E+01 0.8549E+00 0.1261E+00 0.8898E+01 0.3095E+02 460 0.2258E+01 0.0000E+00 -0.3238E+01 0.8683E+00 0.1257E+00 0.9147E+01 0.3091E+02 470 0.2273E+01 0.0000E+00-0.3143E+01 0.8816E+00 0.1253E+00 0.9397E+01 0.3088E+02


```
480 0.2288E+01 0.0000E+00-0.3048E+01 0.8949E+00 0.1248E+00 0.9649E+01 0.3084E+02
490 0.2303E+01 0.0000E+00-0.2953E+01 0.9082E+00 0.1244E+00 0.9902E+01 0.3081E+02
500 0.2317E+01 0.0000E+00 -0.2859E+01 0.9214E+00 0.1239E+00 0.1016E+02 0.3078E+02
510 0.2330E+01 0.0000E+00 -0.2765E+01 0.9346E+00 0.1235E+00 0.1041E+02 0.3075E+02
520 0.2344E+01 0.0000E+00 -0.2671E+01 0.9478E+00 0.1231E+00 0.1067E+02 0.3072E+02
530 0.2357E+01 0.0000E+00 -0.2577E+01 0.9609E+00 0.1227E+00 0.1093E+02 0.3070E+02
540 0.2370E+01 0.0000E+00 -0.2484E+01 0.9739E+00 0.1222E+00 0.1119E+02 0.3067E+02
550 0.2382E+01 0.0000E+00 -0.2391E+01 0.9870E+00 0.1218E+00 0.1145E+02 0.3065E+02
560 0.2394E+01 0.0000E+00 -0.2298E+01 0.1000E+01 0.1214E+00 0.1172E+02 0.3062E+02
570 0.2406E+01 0.0000E+00 -0.2206E+01 0.1013E+01 0.1210E+00 0.1198E+02 0.3060E+02
580 0.2418E+01 0.0000E+00 -0.2114E+01 0.1026E+01 0.1206E+00 0.1225E+02 0.3058E+02
590 0.2429E+01 0.0000E+00 -0.2022E+01 0.1039E+01 0.1202E+00 0.1252E+02 0.3056E+02
600 0.2440E+01 0.0000E+00-0.1930E+01 0.1052E+01 0.1198E+00 0.1279E+02 0.3054E+02
610 0.2451E+01 0.0000E+00 -0.1839E+01 0.1064E+01 0.1194E+00 0.1306E+02 0.3052E+02
620 0.2462E+01 0.0000E+00 -0.1748E+01 0.1077E+01 0.1190E+00 0.1333E+02 0.3050E+02
630 0.2473E+01 0.0000E+00 -0.1657E+01 0.1090E+01 0.1186E+00 0.1360E+02 0.3048E+02
640 0.2483E+01 0.0000E+00 -0.1566E+01 0.1103E+01 0.1183E+00 0.1388E+02 0.3046E+02
650 0.2493E+01 0.0000E+00 -0.1476E+01 0.1115E+01 0.1179E+00 0.1415E+02 0.3045E+02
660 0.2503E+01 0.0000E+00 -0.1386E+01 0.1128E+01 0.1175E+00 0.1443E+02 0.3043E+02
670 0.2513E+01 0.0000E+00 -0.1296E+01 0.1140E+01 0.1171E+00 0.1471E+02 0.3042E+02
680 0.2522E+01 0.0000E+00 -0.1207E+01 0.1153E+01 0.1168E+00 0.1499E+02 0.3040E+02
690 0.2531E+01 0.0000E+00 -0.1118E+01 0.1166E+01 0.1164E+00 0.1527E+02 0.3039E+02
700 0.2541E+01 0.0000E+00 -0.1029E+01 0.1178E+01 0.1161E+00 0.1555E+02 0.3037E+02
710 0.2550E+01 0.0000E+00 -0.9402E+00 0.1190E+01 0.1157E+00 0.1583E+02 0.3036E+02
720 0.2558E+01 0.0000E+00 -0.8518E+00 0.1203E+01 0.1154E+00 0.1612E+02 0.3034E+02
730 0.2567E+01 0.0000E+00 -0.7636E+00 0.1215E+01 0.1150E+00 0.1640E+02 0.3033E+02
740 0.2576E+01 0.0000E+00 -0.6757E+00 0.1228E+01 0.1147E+00 0.1669E+02 0.3032E+02
750 0.2584E+01 0.0000E+00 -0.5880E+00 0.1240E+01 0.1144E+00 0.1697E+02 0.3031E+02
760 0.2592E+01 0.0000E+00 -0.5005E+00 0.1252E+01 0.1140E+00 0.1726E+02 0.3030E+02
770 0.2600E+01 0.0000E+00 -0.4133E+00 0.1264E+01 0.1137E+00 0.1755E+02 0.3028E+02
780 0.2608E+01 0.0000E+00 -0.3264E+00 0.1277E+01 0.1134E+00 0.1784E+02 0.3027E+02
790 0.2616E+01 0.0000E+00 -0.2396E+00 0.1289E+01 0.1131E+00 0.1813E+02 0.3026E+02
800 0.2624E+01 0.0000E+00 -0.1531E+00 0.1301E+01 0.1128E+00 0.1843E+02 0.3025E+02
805 0.2628E+01 0.0000E+00 -0.1100E+00 0.1307E+01 0.1126E+00 0.1857E+02 0.3025E+02
          200 0.15385401 0.000024-00 -0.563461+01 0.65078400 0.33258+00 0.54015+01 0.31525+01
```

310 0.19645-01 0.00002-00-0.57465-01 0.6846600 0.13196-00 0.5620E-01 0.3.74E-02

0.2157E+01 0.0000E+00 0 4866E+01 0.7875E+00 0.1284E+00 0.7682E+01 0.3116E+02

FSRU Outfall 002 - Case 2 (Table 5)

QJ DIL TEMP RJ YJ ZJ 1 0.0000E+00 0.0000E+00 -0.7350E+01 0.2000E+00 0.2600E+00 0.1000E+01 0.4160E+02 2 0.1397E-01 0.0000E+00 -0.7364E+01 0.2034E+00 0.2546E+00 0.1013E+01 0.4145E+02 10 0.1204E+00 0.0000E+00 -0.7460E+01 0.2284E+00 0.2191E+00 0.1099E+01 0.4052E+02 20 0.2438E+00 0.0000E+00 -0.7553E+01 0.2557E+00 0.1879E+00 0.1182E+01 0.3975E+02 30 0.3599E+00 0.0000E+00 -0.7621E+01 0.2797E+00 0.1656E+00 0.1246E+01 0.3923E+02 40 0.4707E+00 0.0000E+00 -0.7668E+01 0.3010E+00 0.1493E+00 0.1302E+01 0.3882E+02 50 0.5768E+00 0.0000E+00 -0.7694E+01 0.3201E+00 0.1376E+00 0.1357E+01 0.3844E+02 60 0.6786E+00 0.0000E+00 -0.7703E+01 0.3372E+00 0.1296E+00 0.1419E+01 0.3806E+02 70 0.7756E+00 0.0000E+00 -0.7696E+01 0.3525E+00 0.1247E+00 0.1492E+01 0.3764E+02 80 0.8675E+00 0.0000E+00 -0.7673E+01 0.3664E+00 0.1221E+00 0.1579E+01 0.3720E+02 90 0.9541E+00 0.0000E+00 -0.7638E+01 0.3793E+00 0.1213E+00 0.1681E+01 0.3674E+02 100 0.1035E+01 0.0000E+00 -0.7592E+01 0.3915E+00 0.1216E+00 0.1796E+01 0.3628E+02 110 0.1111E+01 0.0000E+00 -0.7537E+01 0.4034E+00 0.1226E+00 0.1923E+01 0.3584E+02 120 0.1182E+01 0.0000E+00 -0.7474E+01 0.4152E+00 0.1240E+00 0.2059E+01 0.3543E+02 130 0.1248E+01 0.0000E+00 -0.7404E+01 0.4270E+00 0.1254E+00 0.2204E+01 0.3504E+02 140 0.1310E+01 0.0000E+00 -0.7329E+01 0.4390E+00 0.1268E+00 0.2356E+01 0.3469E+02 150 0.1368E+01 0.0000E+00 -0.7250E+01 0.4512E+00 0.1281E+00 0.2515E+01 0.3437E+02 160 0.1422E+01 0.0000E+00 -0.7167E+01 0.4636E+00 0.1293E+00 0.2679E+01 0.3408E+02 170 0.1473E+01 0.0000E+00 -0.7082E+01 0.4762E+00 0.1302E+00 0.2848E+01 0.3381E+02 180 0.1521E+01 0.0000E+00 -0.6993E+01 0.4890E+00 0.1311E+00 0.3023E+01 0.3357E+02 190 0.1567E+01 0.0000E+00 -0.6903E+01 0.5020E+00 0.1317E+00 0.3201E+01 0.3335E+02 200 0.1609E+01 0.0000E+00 -0.6811E+01 0.5151E+00 0.1323E+00 0.3384E+01 0.3315E+02 210 0.1650E+01 0.0000E+00 -0.6717E+01 0.5283E+00 0.1326E+00 0.3571E+01 0.3296E+02 220 0.1689E+01 0.0000E+00 -0.6623E+01 0.5417E+00 0.1329E+00 0.3762E+01 0.3279E+02 230 0.1725E+01 0.0000E+00 -0.6527E+01 0.5551E+00 0.1331E+00 0.3956E+01 0.3263E+02 240 0.1760E+01 0.0000E+00 -0.6431E+01 0.5686E+00 0.1332E+00 0.4154E+01 0.3249E+02 250 0.1793E+01 0.0000E+00 -0.6334E+01 0.5822E+00 0.1331E+00 0.4354E+01 0.3236E+02 260 0.1825E+01 0.0000E+00 -0.6237E+01 0.5959E+00 0.1331E+00 0.4558E+01 0.3223E+02 270 0.1855E+01 0.0000E+00 -0.6139E+01 0.6095E+00 0.1329E+00 0.4765E+01 0.3212E+02 280 0.1884E+01 0.0000E+00 -0.6041E+01 0.6232E+00 0.1327E+00 0.4975E+01 0.3201E+02 290 0.1912E+01 0.0000E+00 -0.5943E+01 0.6370E+00 0.1325E+00 0.5187E+01 0.3191E+02 300 0.1938E+01 0.0000E+00 -0.5844E+01 0.6507E+00 0.1322E+00 0.5402E+01 0.3182E+02 310 0.1964E+01 0.0000E+00 -0.5746E+01 0.6644E+00 0.1319E+00 0.5620E+01 0.3174E+02 320 0.1989E+01 0.0000E+00 -0.5648E+01 0.6782E+00 0.1316E+00 0.5840E+01 0.3165E+02 330 0.2012E+01 0.0000E+00 -0.5550E+01 0.6919E+00 0.1312E+00 0.6063E+01 0.3158E+02 340 0.2035E+01 0.0000E+00 -0.5451E+01 0.7056E+00 0.1309E+00 0.6288E+01 0.3151E+02 350 0.2057E+01 0.0000E+00 -0.5353E+01 0.7193E+00 0.1305E+00 0.6515E+01 0.3144E+02 360 0.2079E+01 0.0000E+00 -0.5256E+01 0.7330E+00 0.1301E+00 0.6744E+01 0.3138E+02 370 0.2099E+01 0.0000E+00 -0.5158E+01 0.7467E+00 0.1297E+00 0.6976E+01 0.3132E+02 380 0.2119E+01 0.0000E+00 -0.5060E+01 0.7603E+00 0.1292E+00 0.7209E+01 0.3126E+02 390 0.2138E+01 0.0000E+00 -0.4963E+01 0.7739E+00 0.1288E+00 0.7445E+01 0.3121E+02 400 0.2157E+01 0.0000E+00 -0.4866E+01 0.7875E+00 0.1284E+00 0.7682E+01 0.3116E+02 410 0.2175E+01 0.0000E+00 -0.4769E+01 0.8010E+00 0.1279E+00 0.7922E+01 0.3111E+02 420 0.2193E+01 0.0000E+00 -0.4672E+01 0.8146E+00 0.1275E+00 0.8163E+01 0.3107E+02 430 0.2210E+01 0.0000E+00 -0.4576E+01 0.8280E+00 0.1270E+00 0.8407E+01 0.3103E+02 440 0.2226E+01 0.0000E+00 -0.4480E+01 0.8415E+00 0.1266E+00 0.8652E+01 0.3099E+02 450 0.2242E+01 0.0000E+00-0.4384E+01 0.8549E+00 0.1261E+00 0.8898E+01 0.3095E+02 460 0.2258E+01 0.0000E+00 -0.4288E+01 0.8683E+00 0.1257E+00 0.9147E+01 0.3091E+02 470 0.2273E+01 0.0000E+00 -0.4193E+01 0.8816E+00 0.1253E+00 0.9397E+01 0.3088E+02


```
480 0.2288E+01 0.0000E+00 -0.4098E+01 0.8949E+00 0.1248E+00 0.9649E+01 0.3084E+02
490 0.2303E+01 0.0000E+00 -0.4003E+01 0.9082E+00 0.1244E+00 0.9902E+01 0.3081E+02
500 0.2317E+01 0.0000E+00 -0.3909E+01 0.9214E+00 0.1239E+00 0.1016E+02 0.3078E+02
510 0.2330E+01 0.0000E+00 -0.3815E+01 0.9346E+00 0.1235E+00 0.1041E+02 0.3075E+02
520 0.2344E+01 0.0000E+00 -0.3721E+01 0.9478E+00 0.1231E+00 0.1067E+02 0.3072E+02
530 0.2357E+01 0.0000E+00 -0.3627E+01 0.9609E+00 0.1227E+00 0.1093E+02 0.3070E+02
540 0.2370E+01 0.0000E+00 -0.3534E+01 0.9739E+00 0.1222E+00 0.1119E+02 0.3067E+02
550 0.2382E+01 0.0000E+00 -0.3441E+01 0.9870E+00 0.1218E+00 0.1145E+02 0.3065E+02
560 0.2394E+01 0.0000E+00 -0.3348E+01 0.1000E+01 0.1214E+00 0.1172E+02 0.3062E+02
570 0.2406E+01 0.0000E+00 -0.3256E+01 0.1013E+01 0.1210E+00 0.1198E+02 0.3060E+02
580 0.2418E+01 0.0000E+00 -0.3164E+01 0.1026E+01 0.1206E+00 0.1225E+02 0.3058E+02
590 0.2429E+01 0.0000E+00 -0.3072E+01 0.1039E+01 0.1202E+00 0.1252E+02 0.3056E+02
600 0.2440E+01 0.0000E+00 -0.2980E+01 0.1052E+01 0.1198E+00 0.1279E+02 0.3054E+02
610 0.2451E+01 0.0000E+00 -0.2889E+01 0.1064E+01 0.1194E+00 0.1306E+02 0.3052E+02
620 0.2462E+01 0.0000E+00 -0.2798E+01 0.1077E+01 0.1190E+00 0.1333E+02 0.3050E+02
630 0.2473E+01 0.0000E+00 -0.2707E+01 0.1090E+01 0.1186E+00 0.1360E+02 0.3048E+02
640 0.2483E+01 0.0000E+00 -0.2616E+01 0.1103E+01 0.1183E+00 0.1388E+02 0.3046E+02
650 0.2493E+01 0.0000E+00 -0.2526E+01 0.1115E+01 0.1179E+00 0.1415E+02 0.3045E+02
660 0.2503E+01 0.0000E+00 -0.2436E+01 0.1128E+01 0.1175E+00 0.1443E+02 0.3043E+02
670 0.2513E+01 0.0000E+00 -0.2346E+01 0.1140E+01 0.1171E+00 0.1471E+02 0.3042E+02
680 0.2522E+01 0.0000E+00 -0.2257E+01 0.1153E+01 0.1168E+00 0.1499E+02 0.3040E+02
690 0.2531E+01 0.0000E+00 -0.2168E+01 0.1166E+01 0.1164E+00 0.1527E+02 0.3039E+02
700 0.2541E+01 0.0000E+00 -0.2079E+01 0.1178E+01 0.1161E+00 0.1555E+02 0.3037E+02
710 0.2550E+01 0.0000E+00 -0.1990E+01 0.1190E+01 0.1157E+00 0.1583E+02 0.3036E+02
720 0.2558E+01 0.0000E+00 -0.1902E+01 0.1203E+01 0.1154E+00 0.1612E+02 0.3034E+02
730 0.2567E+01 0.0000E+00 -0.1814E+01 0.1215E+01 0.1150E+00 0.1640E+02 0.3033E+02
740 0.2576E+01 0.0000E+00 -0.1726E+01 0.1228E+01 0.1147E+00 0.1669E+02 0.3032E+02
750 0.2584E+01 0.0000E+00 -0.1638E+01 0.1240E+01 0.1144E+00 0.1697E+02 0.3031E+02
760 0.2592E+01 0.0000E+00 -0.1551E+01 0.1252E+01 0.1140E+00 0.1726E+02 0.3030E+02
770 0.2600E+01 0.0000E+00 -0.1463E+01 0.1264E+01 0.1137E+00 0.1755E+02 0.3028E+02
780 0.2608E+01 0.0000E+00 -0.1376E+01 0.1277E+01 0.1134E+00 0.1784E+02 0.3027E+02
790 0.2616E+01 0.0000E+00 -0.1290E+01 0.1289E+01 0.1131E+00 0.1813E+02 0.3026E+02
800 0.2624E+01 0.0000E+00 -0.1203E+01 0.1301E+01 0.1128E+00 0.1843E+02 0.3025E+02
810 0.2632E+01 0.0000E+00 -0.1117E+01 0.1313E+01 0.1124E+00 0.1872E+02 0.3024E+02
820 0.2639E+01 0.0000E+00 -0.1031E+01 0.1325E+01 0.1121E+00 0.1901E+02 0.3023E+02
830 0.2646E+01 0.0000E+00 -0.9450E+00 0.1337E+01 0.1118E+00 0.1931E+02 0.3022E+02
840 0.2654E+01 0.0000E+00 -0.8594E+00 0.1349E+01 0.1115E+00 0.1960E+02 0.3021E+02
850 0.2661E+01 0.0000E+00 -0.7740E+00 0.1361E+01 0.1112E+00 0.1990E+02 0.3020E+02
860 0.2668E+01 0.0000E+00 -0.6889E+00 0.1373E+01 0.1110E+00 0.2020E+02 0.3019E+02
870 0.2675E+01 0.0000E+00 -0.6039E+00 0.1385E+01 0.1107E+00 0.2050E+02 0.3019E+02
880 0.2682E+01 0.0000E+00 -0.5192E+00 0.1397E+01 0.1104E+00 0.2080E+02 0.3018E+02
890 0.2688E+01 0.0000E+00 -0.4347E+00 0.1409E+01 0.1101E+00 0.2110E+02 0.3017E+02
900 0.2695E+01 0.0000E+00 -0.3504E+00 0.1421E+01 0.1098E+00 0.2140E+02 0.3016E+02
910 0.2702E+01 0.0000E+00 -0.2663E+00 0.1433E+01 0.1095E+00 0.2170E+02 0.3015E+02
920 0.2708E+01 0.0000E+00 -0.1824E+00 0.1444E+01 0.1093E+00 0.2201E+02 0.3015E+02
929 0.2714E+01 0.0000E+00 -0.1070E+00 0.1455E+01 0.1090E+00 0.2228E+02 0.3014E+02
                                          00+30F250 - E0+30CC2.0-00+20000 0 10+3E
```


FSRU Outfall 002 – Case 3 (Table 5)

NE XJ YJ ZJ RJ QJ DIL TEMP
1 0.0000E+00 0.0000E+00-0.8400E+01 0.2000E+00 0.2600E+00 0.1000E+01 0.4160E+02
2 0.1397E-01 0.0000E+00 -0.8414E+01 0.2034E+00 0.2546E+00 0.1013E+01 0.4145E+02
10 0.1204E+00 0.0000E+00 -0.8510E+01 0.2284E+00 0.2191E+00 0.1099E+01 0.4052E+02
20 0.2438E+00 0.0000E+00 -0.8603E+01 0.2557E+00 0.1879E+00 0.1182E+01 0.3975E+02
30 0.3599E+00 0.0000E+00 -0.8671E+01 0.2797E+00 0.1656E+00 0.1246E+01 0.3923E+02
40 0.4707E+00 0.0000E+00 -0.8718E+01 0.3010E+00 0.1493E+00 0.1302E+01 0.3882E+02
50 0.5768E+00 0.0000E+00 -0.8744E+01 0.3201E+00 0.1376E+00 0.1357E+01 0.3844E+02
60 0.6786E+00 0.0000E+00 -0.8753E+01 0.3372E+00 0.1296E+00 0.1419E+01 0.3806E+02
70 0.7756E+00 0.0000E+00 -0.8746E+01 0.3525E+00 0.1247E+00 0.1492E+01 0.3764E+02
80 0.8675E+00 0.0000E+00 -0.8723E+01 0.3664E+00 0.1221E+00 0.1579E+01 0.3720E+02
90 0.9541E+00 0.0000E+00 -0.8688E+01 0.3793E+00 0.1213E+00 0.1681E+01 0.3674E+02
100 0.1035E+01 0.0000E+00 -0.8642E+01 0.3915E+00 0.1216E+00 0.1796E+01 0.3628E+02
110 0.1111E+01 0.0000E+00 -0.8587E+01 0.4034E+00 0.1226E+00 0.1923E+01 0.3584E+02
120 0.1182E+01 0.0000E+00 -0.8524E+01 0.4152E+00 0.1240E+00 0.2059E+01 0.3543E+02
130 0.1248E+01 0.0000E+00 -0.8454E+01 0.4270E+00 0.1254E+00 0.2204E+01 0.3504E+02
140 0.1310E+01 0.0000E+00 -0.8379E+01 0.4390E+00 0.1268E+00 0.2356E+01 0.3469E+02
150 0.1368E+01 0.0000E+00 -0.8300E+01 0.4512E+00 0.1281E+00 0.2515E+01 0.3437E+02
160 0.1422E+01 0.0000E+00 -0.8217E+01 0.4636E+00 0.1293E+00 0.2679E+01 0.3408E+02
170 0.1473E+01 0.0000E+00 -0.8132E+01 0.4762E+00 0.1302E+00 0.2848E+01 0.3381E+02
180 0.1521E+01 0.0000E+00 -0.8043E+01 0.4890E+00 0.1311E+00 0.3023E+01 0.3357E+02
190 0.1567E+01 0.0000E+00 -0.7953E+01 0.5020E+00 0.1317E+00 0.3201E+01 0.3335E+02
200 0.1609E+01 0.0000E+00 -0.7861E+01 0.5151E+00 0.1323E+00 0.3384E+01 0.3315E+02
210 0.1650E+01 0.0000E+00 -0.7767E+01 0.5283E+00 0.1326E+00 0.3571E+01 0.3296E+02
220 0.1689E+01 0.0000E+00 -0.7673E+01 0.5417E+00 0.1329E+00 0.3762E+01 0.3279E+02
230 0.1725E+01 0.0000E+00 -0.7577E+01 0.5551E+00 0.1331E+00 0.3956E+01 0.3263E+02
240 0.1760E+01 0.0000E+00 -0.7481E+01 0.5686E+00 0.1332E+00 0.4154E+01 0.3249E+02
250 0.1793E+01 0.0000E+00 -0.7384E+01 0.5822E+00 0.1331E+00 0.4354E+01 0.3236E+02
260 0.1825E+01 0.0000E+00 -0.7287E+01 0.5959E+00 0.1331E+00 0.4558E+01 0.3223E+02
270 0.1855E+01 0.0000E+00 -0.7189E+01 0.6095E+00 0.1329E+00 0.4765E+01 0.3212E+02
280 0.1884E+01 0.0000E+00 -0.7091E+01 0.6232E+00 0.1327E+00 0.4975E+01 0.3201E+02
290 0.1912E+01 0.0000E+00 -0.6993E+01 0.6370E+00 0.1325E+00 0.5187E+01 0.3191E+02
300 0.1938E+01 0.0000E+00 -0.6894E+01 0.6507E+00 0.1322E+00 0.5402E+01 0.3182E+02
310 0.1964E+01 0.0000E+00 -0.6796E+01 0.6644E+00 0.1319E+00 0.5620E+01 0.3174E+02
320 0.1989E+01 0.0000E+00 -0.6698E+01 0.6782E+00 0.1316E+00 0.5840E+01 0.3165E+02
330 0.2012E+01 0.0000E+00 -0.6600E+01 0.6919E+00 0.1312E+00 0.6063E+01 0.3158E+02
340 0.2035E+01 0.0000E+00 -0.6501E+01 0.7056E+00 0.1309E+00 0.6288E+01 0.3151E+02
350 0.2057E+01 0.0000E+00 -0.6403E+01 0.7193E+00 0.1305E+00 0.6515E+01 0.3144E+02
360 0.2079E+01 0.0000E+00 -0.6305E+01 0.7330E+00 0.1301E+00 0.6744E+01 0.3138E+02
370 0.2099E+01 0.0000E+00 -0.6208E+01 0.7467E+00 0.1297E+00 0.6976E+01 0.3132E+02
380 0.2119E+01 0.0000E+00 -0.6110E+01 0.7603E+00 0.1292E+00 0.7209E+01 0.3126E+02
390 0.2138E+01 0.0000E+00 -0.6013E+01 0.7739E+00 0.1288E+00 0.7445E+01 0.3121E+02
400 0.2157E+01 0.0000E+00 -0.5916E+01 0.7875E+00 0.1284E+00 0.7682E+01 0.3116E+02
410 0.2175E+01 0.0000E+00 -0.5819E+01 0.8010E+00 0.1279E+00 0.7922E+01 0.3111E+02
420 0.2193E+01 0.0000E+00 -0.5722E+01 0.8146E+00 0.1275E+00 0.8163E+01 0.3107E+02
430 0.2210E+01 0.0000E+00 -0.5626E+01 0.8280E+00 0.1270E+00 0.8407E+01 0.3103E+02
440 0.2226E+01 0.0000E+00 -0.5530E+01 0.8415E+00 0.1266E+00 0.8652E+01 0.3099E+02
450 0.2242E+01 0.0000E+00 -0.5434E+01 0.8549E+00 0.1261E+00 0.8898E+01 0.3095E+02
460 0.2258E+01 0.0000E+00 -0.5338E+01 0.8683E+00 0.1257E+00 0.9147E+01 0.3091E+02
470 0.2273E+01 0.0000E+00 -0.5243E+01 0.8816E+00 0.1253E+00 0.9397E+01 0.3088E+02


```
480 0.2288E+01 0.0000E+00-0.5148E+01 0.8949E+00 0.1248E+00 0.9649E+01 0.3084E+02
490 0.2303E+01 0.0000E+00-0.5053E+01 0.9082E+00 0.1244E+00 0.9902E+01 0.3081E+02
500 0.2317E+01 0.0000E+00-0.4959E+01 0.9214E+00 0.1239E+00 0.1016E+02 0.3078E+02
510 0.2330E+01 0.0000E+00 -0.4865E+01 0.9346E+00 0.1235E+00 0.1041E+02 0.3075E+02
520 0.2344E+01 0.0000E+00 -0.4771E+01 0.9478E+00 0.1231E+00 0.1067E+02 0.3072E+02
530 0.2357E+01 0.0000E+00 -0.4677E+01 0.9609E+00 0.1227E+00 0.1093E+02 0.3070E+02
540 0.2370E+01 0.0000E+00 -0.4584E+01 0.9739E+00 0.1222E+00 0.1119E+02 0.3067E+02
550 0.2382E+01 0.0000E+00-0.4491E+01 0.9870E+00 0.1218E+00 0.1145E+02 0.3065E+02
560 0.2394E+01 0.0000E+00 -0.4398E+01 0.1000E+01 0.1214E+00 0.1172E+02 0.3062E+02
570 0.2406E+01 0.0000E+00 -0.4306E+01 0.1013E+01 0.1210E+00 0.1198E+02 0.3060E+02
580 0.2418E+01 0.0000E+00-0.4214E+01 0.1026E+01 0.1206E+00 0.1225E+02 0.3058E+02
590 0.2429E+01 0.0000E+00-0.4122E+01 0.1039E+01 0.1202E+00 0.1252E+02 0.3056E+02
600 0.2440E+01 0.0000E+00 -0.4030E+01 0.1052E+01 0.1198E+00 0.1279E+02 0.3054E+02
610 0.2451E+01 0.0000E+00 -0.3939E+01 0.1064E+01 0.1194E+00 0.1306E+02 0.3052E+02
620 0.2462E+01 0.0000E+00-0.3848E+01 0.1077E+01 b.1190E+00 0.1333E+02 0.3050E+02
630 0.2473E+01 0.0000E+00-0.3757E+01 0.1090E+01 0.1186E+00 0.1360E+02 0.3048E+02
640 0.2483E+01 0.0000E+00-0.3666E+01 0.1103E+01 0.1183E+00 0.1388E+02 0.3046E+02
650 0.2493E+01 0.0000E+00-0.3576E+01 0.1115E+01 0.1179E+00 0.1415E+02 0.3045E+02
660 0.2503E+01 0.0000E+00-0.3486E+01 0.1128E+01 0.1175E+00 0.1443E+02 0.3043E+02
670 0.2513E+01 0.0000E+00-0.3396E+01 0.1140E+01 0.1171E+00 0.1471E+02 0.3042E+02
680 0.2522E+01 0.0000E+00-0.3307E+01 0.1153E+01 0.1168E+00 0.1499E+02 0.3040E+02
690 0.2531E+01 0.0000E+00 -0.3218E+01 0.1166E+01 0.1164E+00 0.1527E+02 0.3039E+02
700 0.2541E+01 0.0000E+00 -0.3129E+01 0.1178E+01 0.1161E+00 0.1555E+02 0.3037E+02
710 0.2550E+01 0.0000E+00 -0.3040E+01 0.1190E+01 0.1157E+00 0.1583E+02 0.3036E+02
720 0.2558E+01 0.0000E+00 -0.2952E+01 0.1203E+01 0.1154E+00 0.1612E+02 0.3034E+02
730 0.2567E+01 0.0000E+00 -0.2864E+01 0.1215E+01 0.1150E+00 0.1640E+02 0.3033E+02
740 0.2576E+01 0.0000E+00 -0.2776E+01 0.1228E+01 0.1147E+00 0.1669E+02 0.3032E+02
750 0.2584E+01 0.0000E+00 -0.2688E+01 0.1240E+01 0.1144E+00 0.1697E+02 0.3031E+02
760 0.2592E+01 0.0000E+00 -0.2601E+01 0.1252E+01 0.1140E+00 0.1726E+02 0.3030E+02
770 0.2600E+01 0.0000E+00 -0.2513E+01 0:1264E+01 0.1137E+00 0.1755E+02 0.3028E+02
780 0.2608E+01 0.0000E+00 -0.2426E+01 0.1277E+01 0.1134E+00 0.1784E+02 0.3027E+02
790 0.2616E+01 0.0000E+00 -0.2340E+01 0.1289E+01 0.1131E+00 0.1813E+02 0.3026E+02
800 0.2624E+01 0.0000E+00 -0.2253E+01 0.1301E+01 0.1128E+00 0.1843E+02 0.3025E+02
810 0.2632E+01 0.0000E+00 -0.2167E+01 0.1313E+01 0.1124E+00 0.1872E+02 0.3024E+02
820 0.2639E+01 0.0000E+00 -0.2081E+01 0.1325E+01 0.1121E+00 0.1901E+02 0.3023E+02
830 0.2646E+01 0.0000E+00 -0.1995E+01 0.1337E+01 0.1118E+00 0.1931E+02 0.3022E+02
840 0.2654E+01 0.0000E+00 -0.1909E+01 0.1349E+01 0.1115E+00 0.1960E+02 0.3021E+02
850 0.2661E+01 0.0000E+00 -0.1824E+01 0.1361E+01 0.1112E+00 0.1990E+02 0.3020E+02
860 0.2668E+01 0.0000E+00 -0.1739E+01 0.1373E+01 0.1110E+00 0.2020E+02 0.3019E+02
870 0.2675E+01 0.0000E+00 -0.1654E+01 0.1385E+01 0.1107E+00 0.2050E+02 0.3019E+02
880 0.2682E+01 0.0000E+00 -0.1569E+01 0.1397E+01 0.1104E+00 0.2080E+02 0.3018E+02
890 0.2688E+01 0.0000E+00-0.1485E+01 0.1409E+01 0.1101E+00 0.2110E+02 0.3017E+02
900 0.2695E+01 0.0000E+00 -0.1400E+01 0.1421E+01 0.1098E+00 0.2140E+02 0.3016E+02
910 0.2702E+01 0.0000E+00 -0.1316E+01 0.1433E+01 0.1095E+00 0.2170E+02 0.3015E+02
920 0.2708E+01 0.0000E+00 -0.1232E+01 0.1444E+01 0.1093E+00 0.2201E+02 0.3015E+02
930 0.2715E+01 0.0000E+00 -0.1149E+01 0.1456E+01 0.1090E+00 0.2231E+02 0.3014E+02
940 0.2721E+01 0.0000E+00 -0.1065E+01 0.1468E+01 0.1087E+00 0.2262E+02 0.3013E+02
950 0.2727E+01 0.0000E+00-0.9819E+00 0.1480E+01 0.1085E+00 0.2293E+02 0.3012E+02
960 0.2733E+01 0.0000E+00 -0.8988E+00 0.1491E+01 0.1082E+00 0.2323E+02 0.3012E+02
970 0.2739E+01 0.0000E+00-0.8159E+00 0.1503E+01 0.1079E+00 0.2354E+02 0.3011E+02
980 0.2745E+01 0.0000E+00 -0.7332E+00 0.1515E+01 0.1077E+00 0.2385E+02 0.3010E+02
990 0.2751E+01 0.0000E+00-0.6507E+00 0.1526E+01 0.1074E+00 0.2416E+02 0.3010E+02
1000 0.2757E+01 0.0000E+00 -0.5683E+00 0.1538E+01 0.1072E+00 0.2447E+02 0.3009E+02
```


1010 0.2763E+01 0.0000E+00 -0.4862E+00 0.1549E+01 0.1069E+00 0.2478E+02 0.3008E+02 1020 0.2768E+01 0.0000E+00 -0.4042E+00 0.1561E+01 0.1067E+00 0.2509E+02 0.3008E+02 1030 0.2774E+01 0.0000E+00 -0.3225E+00 0.1572E+01 0.1064E+00 0.2541E+02 0.3007E+02 1040 0.2779E+01 0.0000E+00 -0.2409E+00 0.1584E+01 0.1062E+00 0.2572E+02 0.3007E+02 1050 0.2785E+01 0.0000E+00 -0.1594E+00 0.1595E+01 0.1060E+00 0.2604E+02 0.3006E+02 1057 0.2789E+01 0.0000E+00 -0.1026E+00 0.1603E+01 0.1058E+00 0.2626E+02 0.3006E+02

CONTROLO SINGERIA DE CONTROLO DE CONTROLO

FSRU Outfall 002 - Case 4 (Table 5)

```
YJ ZJ RJ
                               QJ
                                      DIL
                                             TEMP
 1 0.0000E+00 0.0000E+00 -0.6300E+01 0.2000E+00 0.2600E+00 0.1000E+01 0.4160E+02
 2 0.1360E-01 0.2967E-03 -0.6313E+01 0.2089E+00 0.2479E+00 0.1040E+01 0.4114E+02
10 0.1075E+00 0.1076E-01 -0.6399E+01 0.2768E+00 0.1817E+00 0.1340E+01 0.3855E+02
20 0.1991E+00 0.3788E-01 -0.6469E+01 0.3663E+00 0.1348E+00 0.1742E+01 0.3649E+02
30 0.2682E+00 0.7722E-01 -0.6510E+01 0.4876E+00 0.1045E+00 0.2395E+01 0.3461E+02
40 0.3168E+00 0.1277E+00 -0.6532E+01 0.6183E+00 0.9127E-01 0.3365E+01 0.3317E+02
50 0.3544E+00 0.1841E+00 -0.6542E+01 0.6891E+00 0.8847E-01 0.4052E+01 0.3256E+02
60 0.3871E+00 0.2433E+00 -0.6547E+01 0.7307E+00 0.8789E-01 0.4528E+01 0.3225E+02
70 0.4170E+00 0.3039E+00-0.6546E+01 0.7585E+00 0.8805E-01 0.4889E+01 0.3205E+02
80 0.4450E+00 0.3656E+00 -0.6541E+01 0.7784E+00 0.8858E-01 0.5179E+01 0.3192E+02
90 0.4716E+00 0.4281E+00 -0.6532E+01 0.7933E+00 0.8935E-01 0.5426E+01 0.3181E+02
100 0.4971E+00 0.4911E+00 -0.6520E+01 0.8050E+00 0.9029E-01 0.5646E+01 0.3173E+02
110 0.5217E+00 0.5547E+00 -0.6505E+01 0.8147E+00 0.9136E-01 0.5852E+01 0.3165E+02
120 0.5454E+00 0.6187E+00 -0.6486E+01 0.8234E+00 0.9253E-01 0.6054E+01 0.3158E+02
130 0.5683E+00 0.6832E+00 -0.6465E+01 0.8317E+00 0.9377E-01 0.6259E+01 0.3152E+02
140 0.5905E+00 0.7480E+00 -0.6440E+01 0.8402E+00 0.9505E-01 0.6474E+01 0.3145E+02
150 0.6119E+00 0.8133E+00 -0.6414E+01 0.8492E+00 0.9632E-01 0.6703E+01 0.3139E+02
160 0.6326E+00 0.8790E+00 -0.6385E+01 0.8590E+00 0.9757E-01 0.6948E+01 0.3133E+02
170 0.6526E+00 0.9451E+00 -0.6354E+01 0.8699E+00 0.9876E-01 0.7212E+01 0.3126E+02
180 0.6718E+00 0.1012E+01 -0.6322E+01 0.8818E+00 0.9989E-01 0.7495E+01 0.3120E+02
190 0.6902E+00 0.1078E+01 -0.6288E+01 0.8947E+00 0.1009E+00 0.7798E+01 0.3114E+02
200 0.7080E+00 0.1146E+01 -0.6252E+01 0.9087E+00 0.1019E+00 0.8120E+01 0.3108E+02
210 0.7250E+00 0.1213E+01 -0.6216E+01 0.9236E+00 0.1028E+00 0.8461E+01 0.3102E+02
220 0.7413E+00 0.1281E+01 -0.6178E+01 0.9394E+00 0.1036E+00 0.8821E+01 0.3096E+02
230 0.7570E+00 0.1350E+01 -0.6140E+01 0.9560E+00 0.1043E+00 0.9197E+01 0.3090E+02
240 0.7720E+00 0.1419E+01 -0.6101E+01 0.9733E+00 0.1049E+00 0.9591E+01 0.3085E+02
250 0.7864E+00 0.1488E+01 -0.6061E+01 0.9913E+00 0.1054E+00 0.1000E+02 0.3080E+02
260 0.8003E+00 0.1557E+01 -0.6021E+01 0.1010E+01 0.1059E+00 0.1042E+02 0.3075E+02
270 0.8135E+00 0.1627E+01 -0.5981E+01 0.1029E+01 0.1063E+00 0.1086E+02 0.3070E+02
280 0.8263E+00 0.1697E+01 -0.5940E+01 0.1048E+01 0.1067E+00 0.1132E+02 0.3066E+02
290 0.8385E+00 0.1767E+01 -0.5899E+01 0.1068E+01 0.1070E+00 0.1178E+02 0.3062E+02
300 0.8502E+00 0.1838E+01 -0.5858E+01 0.1088E+01 0.1073E+00 0.1226E+02 0.3058E+02
310 0.8615E+00 0.1908E+01 -0.5817E+01 0.1108E+01 0.1076E+00 0.1275E+02 0.3054E+02
320 0.8724E+00 0.1979E+01 -0.5776E+01 0.1129E+01 0.1078E+00 0.1325E+02 0.3051E+02
330 0.8828E+00 0.2051E+01 -0.5735E+01 0.1149E+01 0.1079E+00 0.1376E+02 0.3047E+02
340 0.8929E+00 0.2122E+01 -0.5693E+01 0.1170E+01 0.1081E+00 0.1429E+02 0.3044E+02
350 0.9026E+00 0.2194E+01 -0.5652E+01 0.1191E+01 0.1082E+00 0.1482E+02 0.3041E+02
360 0.9120E+00 0.2266E+01 -0.5611E+01 0.1212E+01 0.1083E+00 0.1536E+02 0.3038E+02
370 0.9210E+00 0.2338E+01 -0.5570E+01 0.1233E+01 0.1084E+00 0.1592E+02 0.3035E+02
380 0.9297E+00 0.2410E+01 -0.5529E+01 0.1255E+01 0.1085E+00 0.1648E+02 0.3033E+02
390 0.9381E+00 0.2482E+01 -0.5489E+01 0.1276E+01 0.1085E+00 0.1705E+02 0.3030E+02
400 0.9463E+00 0.2555E+01 -0.5448E+01 0.1297E+01 0.1086E+00 0.1763E+02 0.3028E+02
410 0.9541E+00 0.2627E+01 -0.5407E+01 0.1318E+01 0.1086E+00 0.1821E+02 0.3026E+02
420 0.9618E+00 0.2700E+01 -0.5367E+01 0.1339E+01 0.1086E+00 0.1881E+02 0.3024E+02
430 0.9692E+00 0.2773E+01 -0.5327E+01 0.1360E+01 0.1086E+00 0.1941E+02 0.3022E+02
440 0.9763E+00 0.2846E+01 -0.5287E+01 0.1382E+01 0.1086E+00 0.2002E+02 0.3020E+02
450 0.9833E+00 0.2919E+01 -0.5247E+01 0.1403E+01 0.1086E+00 0.2064E+02 0.3018E+02
460 0.9900E+00 0.2992E+01 -0.5207E+01 0.1424E+01 0.1086E+00 0.2126E+02 0.3016E+02
470 0.9966E+00 0.3066E+01 -0.5168E+01 0.1445E+01 0.1086E+00 0.2190E+02 0.3015E+02
```



```
480 0.1003E+01 0.3139E+01 -0.5129E+01 0.1466E+01 0.1086E+00 0.2254E+02 0.3013E+02
490 0.1009E+01 0.3213E+01 -0.5090E+01 0.1487E+01 0.1086E+00 0.2318E+02 0.3012E+02
500 0.1015E+01 0.3286E+01 -0.5051E+01 0.1508E+01 0.1086E+00 0.2384E+02 0.3010E+02
510 0.1021E+01 0.3360E+01 -0.5012E+01 0.1529E+01 0.1085E+00 0.2450E+02 0.3009E+02
520 0.1027E+01 0.3434E+01 -0.4973E+01 0.1550E+01 0.1085E+00 0.2517E+02 0.3008E+02
530 0.1032E+01 0.3508E+01 -0.4935E+01 0.1571E+01 0.1085E+00 0.2584E+02 0.3006E+02
540 0.1038E+01 0.3582E+01 -0.4897E+01 0.1592E+01 0.1084E+00 0.2652E+02 0.3005E+02
550 0.1043E+01 0.3656E+01 -0.4859E+01 0.1612E+01 0.1084E+00 0.2721E+02 0.3004E+02
560 0.1048E+01 0.3730E+01 -0.4821E+01 0.1633E+01 0.1084E+00 0.2790E+02 0.3003E+02
570 0.1053E+01 0.3804E+01 -0.4784E+01 0.1654E+01 0.1083E+00 0.2860E+02 0.3002E+02
580 0.1058E+01 0.3878E+01 -0.4746E+01 0.1674E+01 0.1083E+00 0.2930E+02 0.3001E+02
590 0.1063E+01 0.3953E+01 -0.4709E+01 0.1695E+01 0.1082E+00 0.3001E+02 0.3000E+02
600 0.1067E+01 0.4027E+01 -0.4672E+01 0.1715E+01 0.1082E+00 0.3073E+02 0.2999E+02
610 0.1072E+01 0.4102E+01 -0.4635E+01 0.1736E+01 0.1081E+00 0.3145E+02 0.2998E+02
620 0.1076E+01 0.4176E+01 -0.4598E+01 0.1756E+01 0.1081E+00 0.3218E+02 0.2997E+02
630 0.1081E+01 0.4251E+01 -0.4562E+01 0.1776E+01 0.1080E+00 0.3291E+02 0.2996E+02
640 0.1085E+01 0.4325E+01 -0.4526E+01 0.1796E+01 0.1080E+00 0.3365E+02 0.2996E+02
650 0.1089E+01 0.4400E+01 -0.4489E+01 0.1817E+01 0.1080E+00 0.3440E+02 0.2995E+02
660 0.1093E+01 0.4475E+01 -0.4453E+01 0.1837E+01 0.1079E+00 0.3514E+02 0.2994E+02
670 0.1097E+01 0.4549E+01 -0.4418E+01 0.1857E+01 0.1079E+00 0.3590E+02 0.2993E+02
680 0.1101E+01 0.4624E+01 -0.4382E+01 0.1877E+01 0.1078E+00 0.3666E+02 0.2993E+02
690 0.1105E+01 0.4699E+01 -0.4347E+01 0.1896E+01 0.1078E+00 0.3742E+02 0.2992E+02
700 0.1108E+01 0.4774E+01 -0.4311E+01 0.1916E+01 0.1077E+00 0.3819E+02 0.2991E+02
710 0.1112E+01 0.4849E+01 -0.4276E+01 0.1936E+01 0.1077E+00 0.3897E+02 0.2991E+02
720 0.1116E+01 0.4924E+01 -0.4241E+01 0.1956E+01 0.1076E+00 0.3974E+02 0.2990E+02
730 0.1119E+01 0.4999E+01 -0.4206E+01 0.1975E+01 0.1076E+00 0.4053E+02 0.2990E+02
740 0.1123E+01 0.5074E+01 -0.4172E+01 0.1995E+01 0.1075E+00 0.4132E+02 0.2989E+02
750 0.1126E+01 0.5149E+01 -0.4137E+01 0.2014E+01 0.1075E+00 0.4211E+02 0.2988E+02
760 0.1129E+01 0.5224E+01 -0.4103E+01 0.2034E+01 0.1074E+00 0.4291E+02 0.2988E+02
770 0.1133E+01 0.5299E+01 -0.4069E+01 0.2053E+01 0.1074E+00 0.4371E+02 0.2987E+02
780 0.1136E+01 0.5374E+01 -0.4035E+01 0.2072E+01 0.1074E+00 0.4452E+02 0.2987E+02
790 0.1139E+01 0.5450E+01 -0.4001E+01 0.2092E+01 0.1073E+00 0.4533E+02 0.2986E+02
800 0.1142E+01 0.5525E+01 -0.3967E+01 0.2111E+01 0.1073E+00 0.4614E+02 0.2986E+02
810 0.1145E+01 0.5600E+01 -0.3933E+01 0.2130E+01 0.1072E+00 0.4696E+02 0.2986E+02
820 0.1148E+01 0.5676E+01 -0.3900E+01 0.2149E+01 0.1072E+00 0.4779E+02 0.2985E+02
830 0.1151E+01 0.5751E+01 -0.3866E+01 0.2168E+01 0.1071E+00 0.4862E+02 0.2985E+02
840 0.1154E+01 0.5826E+01 -0.3833E+01 0.2187E+01 0.1071E+00 0.4945E+02 0.2984E+02
850 0.1157E+01 0.5902E+01 -0.3800E+01 0.2206E+01 0.1071E+00 0.5029E+02 0.2984E+02
860 0.1160E+01 0.5977E+01 -0.3767E+01 0.2224E+01 0.1070E+00 0.5113E+02 0.2983E+02
870 0.1162E+01 0.6052E+01 -0.3734E+01 0.2243E+01 0.1070E+00 0.5197E+02 0.2983E+02
880 0.1165E+01 0.6128E+01 -0.3702E+01 0.2262E+01 0.1069E+00 0.5282E+02 0.2983E+02
890 0.1168E+01 0.6203E+01 -0.3669E+01 0.2281E+01 0.1069E+00 0.5368E+02 0.2982E+02
900 0.1170E+01 0.6279E+01 -0.3637E+01 0.2299E+01 0.1069E+00 0.5453E+02 0.2982E+02
910 0.1173E+01 0.6354E+01 -0.3605E+01 0.2318E+01 0.1068E+00 0.5539E+02 0.2982E+02
920 0.1175E+01 0.6430E+01 -0.3572E+01 0.2336E+01 0.1068E+00 0.5626E+02 0.2981E+02
930 0.1178E+01 0.6506E+01 -0.3540E+01 0.2354E+01 0.1067E+00 0.5713E+02 0.2981E+02
940 0.1180E+01 0.6581E+01 -0.3508E+01 0.2373E+01 0.1067E+00 0.5800E+02 0.2981E+02
950 0.1183E+01 0.6657E+01 -0.3477E+01 0.2391E+01 0.1067E+00 0.5888E+02 0.2980E+02
960 0.1185E+01 0.6732E+01-0.3445E+01 0.2409E+01 0.1066E+00 0.5976E+02 0.2980E+02
970 0.1187E+01 0.6808E+01 -0.3413E+01 0.2428E+01 0.1066E+00 0.6064E+02 0.2980E+02
980 0.1190E+01 0.6884E+01-0.3382E+01 0.2446E+01 0.1065E+00 0.6153E+02 0.2980E+02
990 0.1192E+01 0.6959E+01 -0.3351E+01 0.2464E+01 0.1065E+00 0.6242E+02 0.2979E+02
1000 0.1194E+01 0.7035E+01-0.3319E+01 0.2482E+01 0.1065E+00 0.6332E+02 0.2979E+02
```



```
1010 0.1196E+01 0.7111E+01-0.3288E+01 0.2500E+01 0.1064E+00 0.6422E+02 0.2979E+02
1020 0.1199E+01 0.7186E+01 -0.3257E+01 0.2518E+01 0.1064E+00 0.6512E+02 0.2978E+02
1030 0.1201E+01 0.7262E+01 -0.3226E+01 0.2535E+01 0.1064E+00 0.6603E+02 0.2978E+02
1040 0.1203E+01 0.7338E+01 -0.3196E+01 0.2553E+01 0.1063E+00 0.6694E+02 0.2978E+02
1050 0.1205E+01 0.7414E+01-0.3165E+01 0.2571E+01 0.1063E+00 0.6785E+02 0.2978E+02
1060 0.1207E+01 0.7490E+01 -0.3134E+01 0.2589E+01 0.1063E+00 0.6877E+02 0.2977E+02
1070 0.1209E+01 0.7565E+01 -0.3104E+01 0.2606E+01 0.1062E+00 0.6969E+02 0.2977E+02
1080 0.1211E+01 0.7641E+01 -0.3073E+01 0.2624E+01 0.1062E+00 0.7061E+02 0.2977E+02
1090 0.1213E+01 0.7717E+01-0.3043E+01 0.2642E+01 0.1062E+00 0.7154E+02 0.2977E+02
1100 0.1215E+01 0.7793E+01 -0.3013E+01 0.2659E+01 0.1061E+00 0.7247E+02 0.2977E+02
1110 0.1217E+01 0.7869E+01 -0.2983E+01 0.2677E+01 0.1061E+00 0.7340E+02 0.2976E+02
1120 0.1219E+01 0.7945E+01 -0.2953E+01 0.2694E+01 0.1061E+00 0.7434E+02 0.2976E+02
1130 0.1221E+01 0.8021E+01 -0.2923E+01 0.2711E+01 0.1060E+00 0.7528E+02 0.2976E+02
1140 0.1223E+01 0.8096E+01 -0.2893E+01 0.2729E+01 0.1060E+00 0.7622E+02 0.2976E+02
1150 0.1225E+01 0.8172E+01 -0.2864E+01 0.2746E+01 0.1060E+00 0.7717E+02 0.2976E+02
1160 0.1226E+01 0.8248E+01 -0.2834E+01 0.2763E+01 0.1060E+00 0.7812E+02 0.2975E+02
1170 0.1228E+01 0.8324E+01 -0.2805E+01 0.2781E+01 0.1059E+00 0.7907E+02 0.2975E+02
1180 0.1230E+01 0.8400E+01 -0.2775E+01 0.2798E+01 0.1059E+00 0.8003E+02 0.2975E+02
1190 0.1232E+01 0.8476E+01 -0.2746E+01 0.2815E+01 0.1059E+00 0.8099E+02 0.2975E+02
1200 0.1233E+01 0.8552E+01 -0.2717E+01 0.2832E+01 0.1058E+00 0.8195E+02 0.2975E+02
1210 0.1235E+01 0.8628E+01 -0.2687E+01 0.2849E+01 0.1058E+00 0.8292E+02 0.2974E+02
1216 0.1236E+01 0.8674E+01 -0.2670E+01 0.2859E+01 0.1058E+00 0.8347E+02 0.2974E+02
```

380 0.92936+00 0.2410E+01 -0.6579E+01 0.1385E+00 0.1385E+00 0.4548E+02 0.3033E+02

FSRU Outfall 002 - Case 5 (Table 5)

NE XJ YJ ZJ RJ QJ DIL TEMP	
1 0.0000E+00 0.0000E+00-0.7350E+01 0.2000E+00 0.2600E+00 0.1000E+01 0.4160E+02	
2 0.1360E-01 0.2967E-03 -0.7363E+01 0.2089E+00 0.2479E+00 0.1040E+01 0.4114E+02	
10 0.1075E+00 0.1076E-01 -0.7449E+01 0.2768E+00 0.1817E+00 0.1340E+01 0.3855E+02	
20 0.1991E+00 0.3788E-01 -0.7519E+01 0.3663E+00 0.1348E+00 0.1742E+01 0.3649E+02	
30 0.2682E+00 0.7722E-01-0.7560E+01 0.4876E+00 0.1045E+00 0.2395E+01 0.3461E+02	
40 0.3168E+00 0.1277E+00 -0.7582E+01 0.6183E+00 0.9127E-01 0.3365E+01 0.3317E+02	
50 0.3544E+00 0.1841E+00 -0.7592E+01 0.6891E+00 0.8847E-01 0.4052E+01 0.3256E+02	
60 0.3871E+00 0.2433E+00 -0.7597E+01 0.7307E+00 0.8789E-01 0.4528E+01 0.3225E+02	
70 0.4170E+00 0.3039E+00 -0.7596E+01 0.7585E+00 0.8805E-01 0.4889E+01 0.3205E+02	
80 0,4450E+00 0.3656E+00 -0.7591E+01 0.7784E+00 0.8858E-01 0.5179E+01 0.3192E+02	
90 0.4716E+00 0.4281E+00 -0.7582E+01 0.7933E+00 0.8935E-01 0.5426E+01 0.3181E+02	
100 0.4971E+00 0.4911E+00 -0.7570E+01 0.8050E+00 0.9029E-01 0.5646E+01 0.3173E+02	
110 0.5217E+00 0.5547E+00 -0.7555E+01 0.8147E+00 0.9136E-01 0.5852E+01 0.3165E+02	
120 0.5454E+00 0.6187E+00 -0.7536E+01 0.8234E+00 0.9253E-01 0.6054E+01 0.3158E+02	
130 0.5683E+00 0.6832E+00 -0.7515E+01 0.8317E+00 0.9377E-01 0.6259E+01 0.3152E+02	
140 0.5905E+00 0.7480E+00 -0.7490E+01 0.8402E+00 0.9505E-01 0.6474E+01 0.3145E+02	
150 0.6119E+00 0.8133E+00 -0.7464E+01 0.8492E+00 0.9632E-01 0.6703E+01 0.3139E+02	
160 0.6326E+00 0.8790E+00 -0.7435E+01 0.8590E+00 0.9757E-01 0.6948E+01 0.3133E+02	
170 0.6526E+00 0.9451E+00 -0.7404E+01 0.8699E+00 0.9876E-01 0.7212E+01 0.3126E+02	
180 0.6718E+00 0.1012E+01 -0.7372E+01 0.8818E+00 0.9989E-01 0.7495E+01 0.3120E+02	
190 0.6902E+00 0.1078E+01 -0.7338E+01 0.8947E+00 0.1009E+00 0.7798E+01 0.3114E+02	
200 0.7080E+00 0.1146E+01 -0.7302E+01 0.9087E+00 0.1019E+00 0.8120E+01 0.3108E+02	
210 0.7250E+00 0.1213E+01 -0.7266E+01 0.9236E+00 0.1028E+00 0.8461E+01 0.3102E+02	
220 0.7413E+00 0.1281E+01 -0.7228E+01 0.9394E+00 0.1036E+00 0.8821E+01 0.3096E+02	
230 0.7570E+00 0.1350E+01 -0.7190E+01 0.9560E+00 0.1043E+00 0.9197E+01 0.3090E+02	
240 0.7720E+00 0.1419E+01 -0.7151E+01 0.9733E+00 0.1049E+00 0.9591E+01 0.3085E+02	
250 0.7864E+00 0.1488E+01 -0.7111E+01 0.9913E+00 0.1054E+00 0.1000E+02 0.3080E+02	
260 0.8003E+00 0.1557E+01 -0.7071E+01 0.1010E+01 0.1059E+00 0.1042E+02 0.3075E+02	
270 0.8135E+00 0.1627E+01 -0.7031E+01 0.1029E+01 0.1063E+00 0.1086E+02 0.3070E+02	
280 0.8263E+00 0.1697E+01 -0.6990E+01 0.1048E+01 0.1067E+00 0.1132E+02 0.3066E+02	
290 0.8385E+00 0.1767E+01 -0.6949E+01 0.1068E+01 0.1070E+00 0.1178E+02 0.3062E+02	
300 0.8502E+00 0.1838E+01 -0.6908E+01 0.1088E+01 0.1073E+00 0.1226E+02 0.3058E+02	
310 0.8615E+00 0.1908E+01 -0.6867E+01 0.1108E+01 0.1076E+00 0.1275E+02 0.3054E+02	•
320 0.8724E+00 0.1979E+01 -0.6826E+01 0.1129E+01 0.1078E+00 0.1325E+02 0.3051E+02)
330 0.8828E+00 0.2051E+01 -0.6785E+01 0.1149E+01 0.1079E+00 0.1376E+02 0.3047E+02	2
340 0.8929E+00 0.2122E+01 -0.6743E+01 0.1170E+01 0.1081E+00 0.1429E+02 0.3044E+02)
350 0.9026E+00 0.2194E+01 -0.6702E+01 0.1191E+01 0.1082E+00 0.1482E+02 0.3041E+02	2
360 0.9120E+00 0.2266E+01 -0.6661E+01 0.1212E+01 0.1083E+00 0.1536E+02 0.3038E+02	2
370 0.9210E+00 0.2338E+01 -0.6620E+01 0.1233E+01 0.1084E+00 0.1592E+02 0.3035E+02	2
380 0.9297E+00 0.2410E+01 -0.6579E+01 0.1255E+01 0.1085E+00 0.1648E+02 0.3033E+02	2
380 0.9381E+00 0.2482E+01 -0.6539E+01 0.1276E+01 0.1085E+00 0.1705E+02 0.3030E+03	2
400 0.9463E+00 0.2555E+01 -0.6498E+01 0.1297E+01 0.1086E+00 0.1763E+02 0.3028E+03	2
410 0.9541E+00 0.2627E+01 -0.6457E+01 0.1318E+01 0.1086E+00 0.1821E+02 0.3026E+00	2
420 0.9618E+00 0.2700E+01 -0.6417E+01 0.1339E+01 0.1086E+00 0.1881E+02 0.3024E+0	2
430 0.9692E+00 0.2773E+01 -0.6377E+01 0.1360E+01 0.1086E+00 0.1941E+02 0.3022E+0	2
440 0.9763E+00 0.2846E+01 -0.6337E+01 0.1382E+01 0.1086E+00 0.2002E+02 0.3020E+0	2
450 0.9833E+00 0.2919E+01 -0.6297E+01 0.1403E+01 0.1086E+00 0.2064E+02 0.3018E+0	2
460 0.9900E+00 0.2992E+01 -0.6257E+01 0.1424E+01 0.1086E+00 0.2126E+02 0.3016E+0	2
470 0.9966E+00 0.3066E+01 -0.6218E+01 0.1445E+01 0.1086E+00 0.2190E+02 0.3015E+0	2
4/0 0.330001101 0.301001101 0.02101 0.1	


```
480 0.1003E+01 0.3139E+01 -0.6179E+01 0.1466E+01 0.1086E+00 0.2254E+02 0.3013E+02
 490 0.1009E+01 0.3213E+01-0.6140E+01 0.1487E+01 0.1086E+00 0.2318E+02 0.3012E+02
 500 0.1015E+01 0.3286E+01-0.6101E+01 0.1508E+01 0.1086E+00 0.2384E+02 0.3010E+02
 510 0.1021E+01 0.3360E+01 -0.6062E+01 0.1529E+01 0.1085E+00 0.2450E+02 0.3009E+02
520 0.1027E+01 0.3434E+01-0.6023E+01 0.1550E+01 0.1085E+00 0.2517E+02 0.3008E+02
530 0.1032E+01 0.3508E+01 -0.5985E+01 0.1571E+01 0.1085E+00 0.2584E+02 0.3006E+02
540 0.1038E+01 0.3582E+01 -0.5947E+01 0.1592E+01 0.1084E+00 0.2652E+02 0.3005E+02
550 0.1043E+01 0.3656E+01-0.5909E+01 0.1612E+01 0.1084E+00 0.2721E+02 0.3004E+02
560 0.1048E+01 0.3730E+01 -0.5871E+01 0.1633E+01 0.1084E+00 0.2790E+02 0.3003E+02
570 0.1053E+01 0.3804E+01 -0.5834E+01 0.1654E+01 0.1083E+00 0.2860E+02 0.3002E+02
580 0.1058E+01 0.3878E+01-0.5796E+01 0.1674E+01 0.1083E+00 0.2930E+02 0.3001E+02
590 0.1063E+01 0.3953E+01-0.5759E+01 0.1695E+01 0.1082E+00 0.3001E+02 0.3000E+02
600 0.1067E+01 0.4027E+01 -0.5722E+01 0.1715E+01 0.1082E+00 0.3073E+02 0.2999E+02
610 0.1072E+01 0.4102E+01 -0.5685E+01 0.1736E+01 0.1081E+00 0.3145E+02 0.2998E+02
620 0.1076E+01 0.4176E+01 -0.5648E+01 0.1756E+01 0.1081E+00 0.3218E+02 0.2997E+02
630 0.1081E+01 0.4251E+01 -0.5612E+01 0.1776E+01 0.1080E+00 0.3291E+02 0.2996E+02
640 0.1085E+01 0.4325E+01 -0.5576E+01 0.1796E+01 0.1080E+00 0.3365E+02 0.2996E+02
650 0.1089E+01 0.4400E+01-0.5539E+01 0.1817E+01 0.1080E+00 0.3440E+02 0.2995E+02
660 0.1093E+01 0.4475E+01 -0.5503E+01 0.1837E+01 0.1079E+00 0.3514E+02 0.2994E+02
670 0.1097E+01 0.4549E+01 -0.5468E+01 0.1857E+01 0.1079E+00 0.3590E+02 0.2993E+02
680 0.1101E+01 0.4624E+01 -0.5432E+01 0.1877E+01 0.1078E+00 0.3666E+02 0.2993E+02
690 0.1105E+01 0.4699E+01 -0.5397E+01 0.1896E+01 0.1078E+00 0.3742E+02 0.2992E+02
700 0.1108E+01 0.4774E+01 -0.5361E+01 0.1916E+01 0.1077E+00 0.3819E+02 0.2991E+02
710 0.1112E+01 0.4849E+01-0.5326E+01 0.1936E+01 0.1077E+00 0.3897E+02 0.2991E+02
720 0.1116E+01 0.4924E+01 -0.5291E+01 0.1956E+01 0.1076E+00 0.3974E+02 0.2990E+02
730 0.1119E+01 0.4999E+01 -0.5256E+01 0.1975E+01 0.1076E+00 0.4053E+02 0.2990E+02
740 0.1123E+01 0.5074E+01 -0.5222E+01 0.1995E+01 0.1075E+00 0.4132E+02 0.2989E+02
750 0.1126E+01 0.5149E+01 -0.5187E+01 0.2014E+01 0.1075E+00 0.4211E+02 0.2988E+02
760 0.1129E+01 0.5224E+01 -0.5153E+01 0.2034E+01 0.1074E+00 0.4291E+02 0.2988E+02
770 0.1133E+01 0.5299E+01 -0.5119E+01 0.2053E+01 0.1074E+00 0.4371E+02 0.2987E+02
780 0.1136E+01 0.5374E+01 -0.5085E+01 0.2072E+01 0.1074E+00 0.4452E+02 0.2987E+02
790 0.1139E+01 0.5450E+01 -0.5051E+01 0.2092E+01 0.1073E+00 0.4533E+02 0.2986E+02
800 0.1142E+01 0.5525E+01 -0.5017E+01 0.2111E+01 0.1073E+00 0.4614E+02 0.2986E+02
810 0.1145E+01 0.5600E+01 -0.4983E+01 0.2130E+01 0.1072E+00 0.4696E+02 0.2986E+02
820 0.1148E+01 0.5676E+01 -0.4950E+01 0.2149E+01 0.1072E+00 0.4779E+02 0.2985E+02
830 0.1151E+01 0.5751E+01 -0.4916E+01 0.2168E+01 0.1071E+00 0.4862E+02 0.2985E+02
840 0.1154E+01 0.5826E+01 -0.4883E+01 0.2187E+01 0.1071E+00 0.4945E+02 0.2984E+02
850 0.1157E+01 0.5902E+01 -0.4850E+01 0.2206E+01 0.1071E+00 0.5029E+02 0.2984E+02
860 0.1160E+01 0.5977E+01 -0.4817E+01 0.2224E+01 0.1070E+00 0.5113E+02 0.2983E+02
870 0.1162E+01 0.6052E+01 -0.4784E+01 0.2243E+01 0.1070E+00 0.5197E+02 0.2983E+02
880 0.1165E+01 0.6128E+01 -0.4752E+01 0.2262E+01 0.1069E+00 0.5282E+02 0.2983E+02
890 0.1168E+01 0.6203E+01 -0.4719E+01 0.2281E+01 0.1069E+00 0.5368E+02 0.2982E+02
900 0.1170E+01 0.6279E+01 -0.4687E+01 0.2299E+01 0.1069E+00 0.5453E+02 0.2982E+02
910 0.1173E+01 0.6354E+01 -0.4655E+01 0.2318E+01 0.1068E+00 0.5539E+02 0.2982E+02
920 0.1175E+01 0.6430E+01 -0.4622E+01 0.2336E+01 0.1068E+00 0.5626E+02 0.2981E+02
930 0.1178E+01 0.6506E+01 -0.4590E+01 0.2354E+01 0.1067E+00 0.5713E+02 0.2981E+02
940 0.1180E+01 0.6581E+01 -0.4558E+01 0.2373E+01 0.1067E+00 0.5800E+02 0.2981E+02
950 0.1183E+01 0.6657E+01 -0.4527E+01 0.2391E+01 0.1067E+00 0.5888E+02 0.2980E+02
960 0.1185E+01 0.6732E+01-0.4495E+01 0.2409E+01 0.1066E+00 0.5976E+02 0.2980E+02
970 0.1187E+01 0.6808E+01-0.4463E+01 0.2428E+01 0.1066E+00 0.6064E+02 0.2980E+02
980 0.1190E+01 0.6884E+01 -0.4432E+01 0.2446E+01 0.1065E+00 0.6153E+02 0.2980E+02
990 0.1192E+01 0.6959E+01-0.4401E+01 0.2464E+01 0.1065E+00 0.6242E+02 0.2979E+02
1000 0.1194E+01 0.7035E+01 -0.4369E+01 0.2482E+01 0.1065E+00 0.6332E+02 0.2979E+02
```



```
1010 0.1196E+01 0.7111E+01-0.4338E+01 0.2500E+01 0.1064E+00 0.6422E+02 0.2979E+02
1020 0.1199E+01 0.7186E+01 -0.4307E+01 0.2518E+01 0.1064E+00 0.6512E+02 0.2978E+02
1030 0.1201E+01 0.7262E+01 -0.4276E+01 0.2535E+01 0.1064E+00 0.6603E+02 0.2978E+02
1040 - 0.1203E+01 0.7338E+01 - 0.4246E+01 0.2553E+01 0.1063E+00 0.6694E+02 0.2978E+02
1050 0.1205E+01 0.7414E+01 -0.4215E+01 0.2571E+01 0.1063E+00 0.6785E+02 0.2978E+02
1060 0.1207E+01 0.7490E+01 -0.4184E+01 0.2589E+01 0.1063E+00 0.6877E+02 0.2977E+02
1070 0.1209E+01 0.7565E+01 -0.4154E+01 0.2606E+01 0.1062E+00 0.6969E+02 0.2977E+02
1080 0.1211E+01 0.7641E+01 -0.4123E+01 0.2624E+01 0.1062E+00 0.7061E+02 0.2977E+02
1090 0.1213E+01 0.7717E+01 -0.4093E+01 0.2642E+01 0.1062E+00 0.7154E+02 0.2977E+02
1100 0.1215E+01 0.7793E+01 -0.4063E+01 0.2659E+01 0.1061E+00 0.7247E+02 0.2977E+02
1110 0.1217E+01 0.7869E+01-0.4033E+01 0.2677E+01 0.1061E+00 0.7340E+02 0.2976E+02
1120 0.1219E+01 0.7945E+01 -0.4003E+01 0.2694E+01 0.1061E+00 0.7434E+02 0.2976E+02
1130 0.1221E+01 0.8021E+01-0.3973E+01 0.2711E+01 0.1060E+00 0.7528E+02 0.2976E+02
1140 0.1223E+01 0.8096E+01-0.3943E+01 0.2729E+01 0.1060E+00 0.7622E+02 0.2976E+02
1150 0.1225E+01 0.8172E+01-0.3914E+01 0.2746E+01 0.1060E+00 0.7717E+02 0.2976E+02
1160 0.1226E+01 0.8248E+01-0.3884E+01 0.2763E+01 0.1060E+00 0.7812E+02 0.2975E+02
1170 0.1228E+01 0.8324E+01-0.3855E+01 0.2781E+01 0.1059E+00 0.7907E+02 0.2975E+02
1180 0.1230E+01 0.8400E+01-0.3825E+01 0.2798E+01 0.1059E+00 0.8003E+02 0.2975E+02
1190 0.1232E+01 0.8476E+01 -0.3796E+01 0.2815E+01 0.1059E+00 0.8099E+02 0.2975E+02
1200 0.1233E+01 0.8552E+01-0.3767E+01 0.2832E+01 0.1058E+00 0.8195E+02 0.2975E+02
1210 0.1235E+01 0.8628E+01 -0.3737E+01 0.2849E+01 0.1058E+00 0.8292E+02 0.2974E+02
1220 0.1237E+01 0.8704E+01 -0.3708E+01 0.2866E+01 0.1058E+00 0.8389E+02 0.2974E+02
1230 0.1239E+01 0.8780E+01 -0.3679E+01 0.2883E+01 0.1058E+00 0.8486E+02 0.2974E+02
1240 0.1240E+01 0.8856E+01-0.3651E+01 0.2900E+01 0.1057E+00 0.8584E+02 0.2974E+02
 1250 0.1242E+01 0.8932E+01 -0.3622E+01 0.2917E+01 0.1057E+00 0.8681E+02 0.2974E+02
 1260 0.1243E+01 0.9008E+01-0.3593E+01 0.2933E+01 0.1057E+00 0.8780E+02 0.2974E+02
 1270 0.1245E+01 0.9084E+01 -0.3564E+01 0.2950E+01 0.1057E+00 0.8878E+02 0.2974E+02
 1280 0.1247E+01 0.9160E+01 -0.3536E+01 0.2967E+01 0.1056E+00 0.8977E+02 0.2973E+02
 1290 0.1248E+01 0.9236E+01 -0.3507E+01 0.2984E+01 0.1056E+00 0.9076E+02 0.2973E+02
 1300 0.1250E+01 0.9313E+01 -0.3479E+01 0.3000E+01 0.1056E+00 0.9175E+02 0.2973E+02
 1310 0.1251E+01 0.9389E+01-0.3451E+01 0.3017E+01 0.1055E+00 0.9275E+02 0.2973E+02
 1320 0.1253E+01 0.9465E+01 -0.3423E+01 0.3033E+01 0.1055E+00 0.9375E+02 0.2973E+02
 1330 0.1254E+01 0.9541E+01 -0.3394E+01 0.3050E+01 0.1055E+00 0.9475E+02 0.2973E+02
 1340 0.1256E+01 0.9617E+01 -0.3366E+01 0.3066E+01 0.1055E+00 0.9576E+02 0.2973E+02
 1350 0.1257E+01 0.9693E+01 -0.3338E+01 0.3083E+01 0.1054E+00 0.9676E+02 0.2972E+02
 1360 0.1259E+01 0.9769E+01 -0.3310E+01 0.3099E+01 0.1054E+00 0.9777E+02 0.2972E+02
 1370 0.1260E+01 0.9845E+01 -0.3283E+01 0.3116E+01 0.1054E+00 0.9879E+02 0.2972E+02
 1380 0.1262E+01 0.9921E+01 -0.3255E+01 0.3132E+01 0.1054E+00 0.9980E+02 0.2972E+02
 1390 0.1263E+01 0.9998E+01-0.3227E+01 0.3148E+01 0.1054E+00 0.1008E+03 0.2972E+02
 1400 0.1264E+01 0.1007E+02 -0.3199E+01 0.3165E+01 0.1053E+00 0.1018E+03 0.2972E+02
 1410 0.1266E+01 0.1015E+02 -0.3172E+01 0.3181E+01 0.1053E+00 0.1029E+03 0.2972E+02
 1420 0.1267E+01 0.1023E+02 -0.3144E+01 0.3197E+01 0.1053E+00 0.1039E+03 0.2972E+02
 1430 0.1268E+01 0.1030E+02 -0.3117E+01 0.3213E+01 0.1053E+00 0.1049E+03 0.2971E+02
 1440 0.1270E+01 0.1038E+02 -0.3090E+01 0.3229E+01 0.1052E+00 0.1060E+03 0.2971E+02
  1450 0.1271E+01 0.1045E+02 -0.3062E+01 0.3245E+01 0.1052E+00 0.1070E+03 0.2971E+02
  1452 0.1271E+01 0.1047E+02 -0.3057E+01 0.3247E+01 0.1052E+00 0.1071E+03 0.2971E+02
```


FSRU Outfall 002 - Case 6 (Table 5)

NE	XJ YJ	ZJ . F	sı Oı	DIL TEN	ЛΡ	312 LY D- 10-		
1	0.0000E+00	0.0000E+00	-0.8400E+01	0.2000F+00	0.2600E+00	0 1000E:01	0.4160E+02	
2	0.13006-01 (J.290/E-U3 -	0.8413E+01).2089E+00 (2479F+00 C	1040E±01 (111111100	
1.0	0.10/25+00	0.10/6F-01	-0.8499E+01	0.2768F+00	0 1817F+00	A 1240E : 01	0 30555.03	
20	0.13315+00	U.3/88E-U1	-0.8569E+01	0.3663E+00	0.1348F+00	0 17425101	0 30405.03	
20	U.2002L+00	U.//ZZE-UI	-0.8610E+01	0.4876E + 00	0 1045F+00	0 22055 101	0 24615.02	
40	0.31005400	U.12//E+UU	-0.8632E+01	0.6183E+00	0.9127F-01	0 3365F±01	0 22175:02	
50	0.33446400	0.18416+00	-0.8642E+01	0.6891E+00	0.8847F-01	0.40525101	0 22555.02	
UU	0.36716400	U.2433E+UU	-0.8647E+01	0.7307F+00	0.8789F-01	0.45205101	0 22255,02	
10	0.41/06400	0.30395+00	-0.8646E+01	0.7585E+00	0.8805F-01	UVBBOETU1	0 22055,02	
00	0.44305400	0.36565+00	-0.8641E+01	0.7784E+00	0.8858F-01	0.5179F±01	0 21025:02	
30	0.47105+00	0.4281F+00	-0.8632E+01	0.7933E+00	0.8935F-01	05/265-01	0 21015:02	
100	0.49/16+00	0.4911E+0()-0.8620E+01	0.8050E + 0.000	0.9029F-01	0.56465+01	0 21725,02	
TTO	0.321/6400	U.554/E+U()-U.8605E+01	0.8147E+00	0.9136F-01	0.58525+01	0 21655.02	
120	0.5454E+UU	0.018/5+00)-0.8586E+01	0.8234F+00	0 9253F-01	0 60545+01	0.21505.02	
130	0.30035+00	U.6832E+UC)-0.8565E+01	0.8317E+00	0.9377F-01	0.62505+01	0 21525.02	
140	0.53056400	U.7480E+00	0.8540E+01	0.8402E+00	0.9505F-01	0.6474F+01	0 21455.02	
720	0.01135+00	0.8133F+0C)-0.8514E+01	0.8492F+00	0.9632F-01	0.67025101	0 21205.02	
TOO	0.03266+00	0.8/90F+0C)-0.8485E+01	0.8590E+00	D 9757F-01	0 60105101	0 21225.02	
1/0	0.03205+00	U.9451E+UC)-0.8454E+01	0.8699F+00	0 9876F-01	0 72125401	0 21265.02	
100	0.07195+00	0.10175+01	-0.8422E+01	0.8818E+00	0.9989F-01	0.7/05F±01	0 21205:02	
TOO	0.0902E+00	0.10/85+01	0.8388E+01	0.8947E+00	0.1009F+00	0 7708E±01	0 21145.02	
200	U./U8UE+UU	0.1146E+01	0.8352E+01	0.9087E+00	0.1019F+00	0.8120F±01	0 21005.02	
210	U.725UE+UU	U.1213E+U1	0.8316E+01	0.9236E+00	0.1028F+00	0.8461F±01	0 21025:02	
220	0.74135+00	0.1281E+01	-0.8278E+01	0.9394E+00	0.1036F+00	0 8821E+01	0.20065.02	
230	U.7570E+00	U.1350E+01	-0.8240E+01	0.9560E+00	0.1043F+00	0.9197F±01	0 20005 102	
240	U.772UE+UU	0.1419E+01	-0.8201E+01	0.9733E+00	0.1049F+00	0 9501 F±01	0 20055102	
250	U.7864E+UU	0.1488E+01	-0.8161E+01	0.9913E+00	0.1054F+00	0.1000E±02	0 20005 102	
200	U.8003E+00	U.155/E+U1	-0.8121E+01	0.1010E+01	0.1059F+00	0.10425+02	0.20755.02	
2/0	0.9722F+00	0.162/E+01	-0.8081E+01	0.1029E+01	0.1063F+00	0.10865+02	0 20705 .02	
200	U.8263E+UU	0.169/E+01	-0.8040E+01	0.1048E+01	0.1067F+00	0.1132F±02	0 20665102	
250	0.03035+00	0.1/6/2+01	-0.7999E+01	0.1068E+01	0.1070F+00	0 1178F±02	0 20625.02	
200	U.85UZE+UU	0.1838F+01	-0.7958E+01	0.1088E+01	0.1073F+00	0.1226F±02	0 20505.03	
210	0.90125+00	0.1908E+01	-0.7917E+01	0.1108E+01	0.1076F+00	0 12755+02	0 20545.02	
320	0.8724E+00	0.19/9E+01	-0.7876E+01	0.1129E+01	0.1078F+00	0 1325F±02	0 20515102	
220	U.8828E+UU	0.2051E+01	-0.7835E+01	0.1149F+01	0 1079F+00	0 12765:02	0 30475.02	
340	0.8929E+00	0.2122E+01	-0.7793E+01	0.1170E+01	0.1081F+00	0 1429F+02	U 3044E103	
350	0.9026E+00	0.2194E+01	-0.7752E+01	0.1191E+01	0.1082E+00	0.1482F+02	0.30415+03	
300	0.91205+00	0.2266E+01	-0.7711E+01	0.1212E+01	0.1083E+00	0.1536F+02	U 3U38E+U3	
3/0	0.92105+00	0.2338E+01	-0.7670E+01	0.1233E+01	0.1084E+00	0.1592F+02	0 30355+03	
380	0.929/E+00	0.2410E+01	-0.7629E+01	0.1255E+01	0.1085E+00	0.1648F+02	U 3U33ETU3	
390	0.93815+00	0.2482E+01	-0.7589E+01	0.1276E+01	0.1085E+00	0.1705F+02	U 3U3UE+U3	
400	0.9463E+00	0.2555E+01	-0.7548E+01	0.1297E+01	0.1086E+00	0.1763F+02	U 3U38ETU3	
410	0.9541E+00	0.262/E+01	-0.7507E+01	0.1318E+01	0.1086E+00	0.1821F+02	U 3036ET03	
420	0.9618E+00	0.2700E+01	-0.7467E+01	0.1339E+01	0.1086E+00	0.1881F+02	U 3034E+03	
430	U.9692E+00	0.27/3E+01	-0.7427E+01	0.1360E+01	0.1086E+00	0 1941F+02	U 3U33ETU3	
440	0.9763E+00	0.2846E+01	-0.7387E+01	0.1382E+01	0.1086E+00	0.2002F+02	U 3030E+03	
450	0.9833E+00	0.2919E+01	-0.7347E+01	0.1403E+01	0.1086E+00	0.2064F+02	0 3018E±02	
460	0.9900E+00	0.2992E+01	-0.7307E+01	0.1424E+01	0.1086F+00	0.2126F±02	0 20165 02	
4/0	U.9966E+00	U.3066E+01	-0.7268E+01	0.1445E+01	0.1086E+00	0.2190E+02	0.3015E+02	


```
480 0.1003E+01 0.3139E+01-0.7229E+01 0.1466E+01 0.1086E+00 0.2254E+02 0.3013E+02
490 0.1009E+01 0.3213E+01-0.7190E+01 0.1487E+01 0.1086E+00 0.2318E+02 0.3012E+02
500 0.1015E+01 0.3286E+01 -0.7151E+01 0.1508E+01 0.1086E+00 0.2384E+02 0.3010E+02
510 0.1021E+01 0.3360E+01 -0.7112E+01 0.1529E+01 0.1085E+00 0.2450E+02 0.3009E+02
520 0.1027E+01 0.3434E+01-0.7073E+01 0.1550E+01 0.1085E+00 0.2517E+02 0.3008E+02
530 0.1032E+01 0.3508E+01 -0.7035E+01 0.1571E+01 0.1085E+00 0.2584E+02 0.3006E+02
540 0.1038E+01 0.3582E+01 -0.6997E+01 0.1592E+01 0.1084E+00 0.2652E+02 0.3005E+02
550 0.1043E+01 0.3656E+01-0.6959E+01 0.1612E+01 0.1084E+00 0.2721E+02 0.3004E+02
560 0.1048E+01 0.3730E+01 -0.6921E+01 0.1633E+01 0.1084E+00 0.2790E+02 0.3003E+02
570 0.1053E+01 0.3804E+01 -0.6884E+01 0.1654E+01 0.1083E+00 0.2860E+02 0.3002E+02
580 0.1058E+01 0.3878E+01 -0.6846E+01 0.1674E+01 0.1083E+00 0.2930E+02 0.3001E+02
590 0.1063E+01 0.3953E+01-0.6809E+01 0.1695E+01 0.1082E+00 0.3001E+02 0.3000E+02
600 0.1067E+01 0.4027E+01 -0.6772E+01 0.1715E+01 0.1082E+00 0.3073E+02 0.2999E+02
610 0.1072E+01 0.4102E+01 -0.6735E+01 0.1736E+01 0.1081E+00 0.3145E+02 0.2998E+02
620 0.1076E+01 0.4176E+01 -0.6698E+01 0.1756E+01 0.1081E+00 0.3218E+02 0.2997E+02
630 0.1081E+01 0.4251E+01 -0.6662E+01 0.1776E+01 0.1080E+00 0.3291E+02 0.2996E+02
640 0.1085E+01 0.4325E+01-0.6626E+01 0.1796E+01 0.1080E+00 0.3365E+02 0.2996E+02
650 0.1089E+01 0.4400E+01 -0.6589E+01 0.1817E+01 0.1080E+00 0.3440E+02 0.2995E+02
660 0.1093E+01 0.4475E+01 -0.6553E+01 0.1837E+01 0.1079E+00 0.3514E+02 0.2994E+02
670 0.1097E+01 0.4549E+01 -0.6518E+01 0.1857E+01 0.1079E+00 0.3590E+02 0.2993E+02
680 0.1101E+01 0.4624E+01-0.6482E+01 0.1877E+01 0.1078E+00 0.3666E+02 0.2993E+02
 690 0.1105E+01 0.4699E+01-0.6447E+01 0.1896E+01 0.1078E+00 0.3742E+02 0.2992E+02
 700 0.1108E+01 0.4774E+01-0.6411E+01 0.1916E+01 0.1077E+00 0.3819E+02 0.2991E+02
 710 0.1112E+01 0.4849E+01-0.6376E+01 0.1936E+01 0.1077E+00 0.3897E+02 0.2991E+02
 720 0.1116E+01 0.4924E+01-0.6341E+01 0.1956E+01 0.1076E+00 0.3974E+02 0.2990E+02
 730 0.1119E+01 0.4999E+01-0.6306E+01 0.1975E+01 0.1076E+00 0.4053E+02 0.2990E+02
 740 0.1123E+01 0.5074E+01-0.6272E+01 0.1995E+01 0.1075E+00 0.4132E+02 0.2989E+02
 750 0.1126E+01 0.5149E+01 -0.6237E+01 0.2014E+01 0.1075E+00 0.4211E+02 0.2988E+02
 760 0.1129E+01 0.5224E+01-0.6203E+01 0.2034E+01 0.1074E+00 0.4291E+02 0.2988E+02
 770 0.1133E+01 0.5299E+01-0.6169E+01 0.2053E+01 0.1074E+00 0.4371E+02 0.2987E+02
 780 0.1136E+01 0.5374E+01-0.6135E+01 0.2072E+01 0.1074E+00 0.4452E+02 0.2987E+02
 790 0.1139E+01 0.5450E+01-0.6101E+01 0.2092E+01 0.1073E+00 0.4533E+02 0.2986E+02
 800 0.1142E+01 0.5525E+01-0.6067E+01 0.2111E+01 0.1073E+00 0.4614E+02 0.2986E+02
 810 0.1145E+01 0.5600E+01-0.6033E+01 0.2130E+01 0.1072E+00 0.4696E+02 0.2986E+02
  820 0.1148E+01 0.5676E+01-0.6000E+01 0.2149E+01 0.1072E+00 0.4779E+02 0.2985E+02
  830 0.1151E+01 0.5751E+01-0.5966E+01 0.2168E+01 0.1071E+00 0.4862E+02 0.2985E+02
  840 0.1154E+01 0.5826E+01-0.5933E+01 0.2187E+01 0.1071E+00 0.4945E+02 0.2984E+02
  850 0.1157E+01 0.5902E+01-0.5900E+01 0.2206E+01 0.1071E+00 0.5029E+02 0.2984E+02
  860 0.1160E+01 0.5977E+01-0.5867E+01 0.2224E+01 0.1070E+00 0.5113E+02 0.2983E+02
  870 0.1162E+01 0.6052E+01-0.5834E+01 0.2243E+01 0.1070E+00 0.5197E+02 0.2983E+02
  880 0.1165E+01 0.6128E+01-0.5802E+01 0.2262E+01 0.1069E+00 0.5282E+02 0.2983E+02
  890 0.1168E+01 0.6203E+01-0.5769E+01 0.2281E+01 0.1069E+00 0.5368E+02 0.2982E+02
  900 0.1170E+01 0.6279E+01-0.5737E+01 0.2299E+01 0.1069E+00 0.5453E+02 0.2982E+02
  910 0.1173E+01 0.6354E+01-0.5705E+01 0.2318E+01 0.1068E+00 0.5539E+02 0.2982E+02
  920 0.1175E+01 0.6430E+01-0.5672E+01 0.2336E+01 0.1068E+00 0.5626E+02 0.2981E+02
  930 0.1178E+01 0.6506E+01-0.5640E+01 0.2354E+01 0.1067E+00 0.5713E+02 0.2981E+02
   940 0.1180E+01 0.6581E+01-0.5608E+01 0.2373E+01 0.1067E+00 0.5800E+02 0.2981E+02
   950 0.1183E+01 0.6657E+01 -0.5577E+01 0.2391E+01 0.1067E+00 0.5888E+02 0.2980E+02
   960 0.1185E+01 0.6732E+01-0.5545E+01 0.2409E+01 0.1066E+00 0.5976E+02 0.2980E+02
   970 0.1187E+01 0.6808E+01-0.5513E+01 0.2428E+01 0.1066E+00 0.6064E+02 0.2980E+02
   980 0.1190E+01 0.6884E+01-0.5482E+01 0.2446E+01 0.1065E+00 0.6153E+02 0.2980E+02
   990 0.1192E+01 0.6959E+01-0.5451E+01 0.2464E+01 0.1065E+00 0.6242E+02 0.2979E+02
   1000 0.1194E+01 0.7035E+01-0.5419E+01 0.2482E+01 0.1065E+00 0.6332E+02 0.2979E+02
```



```
1010 0.1196E+01 0.7111E+01-0.5388E+01 0.2500E+01 0.1064E+00 0.6422E+02 0.2979E+02
1020 0.1199E+01 0.7186E+01-0.5357E+01 0.2518E+01 0.1064E+00 0.6512E+02 0.2978E+02
1030 0.1201E+01 0.7262E+01-0.5326E+01 0.2535E+01 0.1064E+00 0.6603E+02 0.2978E+02
1040 0.1203E+01 0.7338E+01-0.5296E+01 0.2553E+01 0.1063E+00 0.6694E+02 0.2978E+02
1050 0.1205E+01 0.7414E+01-0.5265E+01 0.2571E+01 0.1063E+00 0.6785E+02 0.2978E+02
1060 0.1207E+01 0.7490E+01-0.5234E+01 0.2589E+01 0.1063E+00 0.6877E+02 0.2977E+02
1070 0.1209E+01 0.7565E+01-0.5204E+01 0.2606E+01 0.1062E+00 0.6969E+02 0.2977E+02
1080 0.1211E+01 0.7641E+01-0.5173E+01 0.2624E+01 0.1062E+00 0.7061E+02 0.2977E+02
1090 0.1213E+01 0.7717E+01-0.5143E+01 0.2642E+01 0.1062E+00 0.7154E+02 0.2977E+02
1100 0.1215E+01 0.7793E+01-0.5113E+01 0.2659E+01 0.1061E+00 0.7247E+02 0.2977E+02
1110 0.1217E+01 0.7869E+01-0.5083E+01 0.2677E+01 0.1061E+00 0.7340E+02 0.2976E+02
1120 0.1219E+01 0.7945E+01-0.5053E+01 0.2694E+01 0.1061E+00 0.7434E+02 0.2976E+02
1130 0.1221E+01 0.8021E+01-0.5023E+01 0.2711E+01 0.1060E+00 0.7528E+02 0.2976E+02
1140 0.1223E+01 0.8096E+01-0.4993E+01 0.2729E+01 0.1060E+00 0.7622E+02 0.2976E+02
1150 0.1225E+01 0.8172E+01 -0.4964E+01 0.2746E+01 0.1060E+00 0.7717E+02 0.2976E+02
1160 0.1226E+01 0.8248E+01-0.4934E+01 0.2763E+01 0.1060E+00 0.7812E+02 0.2975E+02
1170 0.1228E+01 0.8324E+01-0.4905E+01 0.2781E+01 0.1059E+00 0.7907E+02 0.2975E+02
1180 0.1230E+01 0.8400E+01 -0.4875E+01 0.2798E+01 0.1059E+00 0.8003E+02 0.2975E+02
1190 0.1232E+01 0.8476E+01 -0.4846E+01 0.2815E+01 0.1059E+00 0.8099E+02 0.2975E+02
1200 0.1233E+01 0.8552E+01-0.4817E+01 0.2832E+01 0.1058E+00 0.8195E+02 0.2975E+02
1210 0.1235E+01 0.8628E+01-0.4787E+01 0.2849E+01 0.1058E+00 0.8292E+02 0.2974E+02
1220 0.1237E+01 0.8704E+01 -0.4758E+01 0.2866E+01 0.1058E+00 0.8389E+02 0.2974E+02
1230 0.1239E+01 0.8780E+01 -0.4729E+01 0.2883E+01 0.1058E+00 0.8486E+02 0.2974E+02
1240 0.1240E+01 0.8856E+01-0.4701E+01 0.2900E+01 0.1057E+00 0.8584E+02 0.2974E+02
1250 0.1242E+01 0.8932E+01 -0.4672E+01 0.2917E+01 0.1057E+00 0.8681E+02 0.2974E+02
1260 0.1243E+01 0.9008E+01-0.4643E+01 0.2933E+01 0.1057E+00 0.8780E+02 0.2974E+02
1270 0.1245E+01 0.9084E+01-0.4614E+01 0.2950E+01 0.1057E+00 0.8878E+02 0.2974E+02
1280 0.1247E+01 0.9160E+01 -0.4586E+01 0.2967E+01 0.1056E+00 0.8977E+02 0.2973E+02
1290 0.1248E+01 0.9236E+01-0.4557E+01 0.2984E+01 0.1056E+00 0.9076E+02 0.2973E+02
1300 0.1250E+01 0.9313E+01-0.4529E+01 0.3000E+01 0.1056E+00 0.9175E+02 0.2973E+02
1310 0.1251E+01 0.9389E+01-0.4501E+01 0.3017E+01 0.1055E+00 0.9275E+02 0.2973E+02
1320 0.1253E+01 0.9465E+01-0.4473E+01 0.3033E+01 0.1055E+00 0.9375E+02 0.2973E+02
1330 0.1254E+01 0.9541E+01 -0.4444E+01 0.3050E+01 0.1055E+00 0.9475E+02 0.2973E+02
1340 0.1256E+01 0.9617E+01-0.4416E+01 0.3066E+01 0.1055E+00 0.9576E+02 0.2973E+02
1350 0.1257E+01 0.9693E+01-0.4388E+01 0.3083E+01 0.1054E+00 0.9676E+02 0.2972E+02
1360 0.1259E+01 0.9769E+01 -0.4360E+01 0.3099E+01 0.1054E+00 0.9777E+02 0.2972E+02
1370 0.1260E+01 0.9845E+01-0.4333E+01 0.3116E+01 0.1054E+00 0.9879E+02 0.2972E+02
1380 0.1262E+01 0.9921E+01 -0.4305E+01 0.3132E+01 0.1054E+00 0.9980E+02 0.2972E+02
1390 0.1263E+01 0.9998E+01 -0.4277E+01 0.3148E+01 0.1054E+00 0.1008E+03 0.2972E+02
1400 0.1264E+01 0.1007E+02 -0.4249E+01 0.3165E+01 0.1053E+00 0.1018E+03 0.2972E+02
1410 0.1266E+01 0.1015E+02 -0.4222E+01 0.3181E+01 0.1053E+00 0.1029E+03 0.2972E+02
1420 0.1267E+01 0.1023E+02 -0.4194E+01 0.3197E+01 0.1053E+00 0.1039E+03 0.2972E+02
1430 0.1268E+01 0.1030E+02 -0.4167E+01 0.3213E+01 0.1053E+00 0.1049E+03 0.2971E+02
1440 0.1270E+01 0.1038E+02 -0.4140E+01 0.3229E+01 0.1052E+00 0.1060E+03 0.2971E+02
1450 0.1271E+01 0.1045E+02 -0.4112E+01 0.3245E+01 0.1052E+00 0.1070E+03 0.2971E+02
1460 0.1272E+01 0.1053E+02 -0.4085E+01 0.3261E+01 0.1052E+00 0.1080E+03 0.2971E+02
1470 0.1274E+01 0.1061E+02 -0.4058E+01 0.3277E+01 0.1052E+00 0.1091E+03 0.2971E+02
1480 0.1275E+01 0.1068E+02 -0.4031E+01 0.3293E+01 0.1052E+00 0.1101E+03 0.2971E+02
1490 0.1276E+01 0.1076E+02 -0.4004E+01 0.3309E+01 0.1051E+00 0.1112E+03.0.2971E+02
1500 0.1278E+01 0.1084E+02 -0.3977E+01 0.3325E+01 0.1051E+00 0.1122E+03 0.2971E+02
1510 0.1279E+01 0.1091E+02 -0.3950E+01 0.3341E+01 0.1051E+00 0.1133E+03 0.2971E+02
1520 0.1280E+01 0.1099E+02 -0.3923E+01 0.3357E+01 0.1051E+00 0.1143E+03 0.2970E+02
1530 0.1281E+01 0.1106E+02 -0.3897E+01 0.3373E+01 0.1051E+00 0.1154E+03 0.2970E+02
```



```
1540 0.1283E+01 0.1114E+02 -0.3870E+01 0.3389E+01 0.1050E+00 0.1164E+03 0.2970E+02
1550 0.1284E+01 0.1122E+02 -0.3843E+01 0.3404E+01 0.1050E+00 0.1175E+03 0.2970E+02
1560 0.1285E+01 0.1129E+02 -0.3817E+01 0.3420E+01 0.1050E+00 0.1186E+03 0.2970E+02
1570 0.1286E+01 0.1137E+02 -0.3790E+01 0.3436E+01 0.1050E+00 0.1196E+03 0.2970E+02
1580 0.1287E+01 0.1145E+02 -0.3764E+01 0.3451E+01 0.1050E+00 0.1207E+03 0.2970E+02
1590 0.1288E+01 0.1152E+02 -0.3737E+01 0.3467E+01 0.1049E+00 0.1218E+03 0.2970E+02
1600 0.1290E+01 0.1160E+02 -0.3711E+01 0.3483E+01 0.1049E+00 0.1229E+03 0.2970E+02
1610 0.1291E+01 0.1167E+02 -0.3685E+01 0.3498E+01 0.1049E+00 0.1239E+03 0.2970E+02
1620 0.1292E+01 0.1175E+02 -0.3659E+01 0.3514E+01 0.1049E+00 0.1250E+03 0.2970E+02
1630 0.1293E+01 0.1183E+02 -0.3633E+01 0.3529E+01 0.1049E+00 0.1261E+03 0.2970E+02
1640 0.1294E+01 0.1190E+02 -0.3607E+01 0.3545E+01 0.1048E+00 0.1272E+03 0.2969E+02
1650 0.1295E+01 0.1198E+02 -0.3581E+01 0.3560E+01 0.1048E+00 0.1283E+03 0.2969E+02
1660 0.1296E+01 0.1206E+02 -0.3555E+01 0.3575E+01 0.1048E+00 0.1294E+03 0.2969E+02
1670 0.1297E+01 0.1213E+02 -0.3529E+01 0.3591E+01 0.1048E+00 0.1305E+03 0.2969E+02
1680 0.1299E+01 0.1221E+02 -0.3503E+01 0.3606E+01 0.1048E+00 0.1316E+03 0.2969E+02
1690 0.1300E+01 0.1229E+02 -0.3477E+01 0.3621E+01 0.1048E+00 0.1327E+03 0.2969E+02
1700 0.1301E+01 0.1236E+02 -0.3451E+01 0.3637E+01 0.1047E+00 0.1338E+03 0.2969E+02
1702 0.1301E+01 0.1238E+02 -0.3446E+01 0.3638E+01 0.1047E+00 0.1339E+03 0.2969E+02
```

ALL IS & CONTRACT OR TWO

LNGC Thermal Discharge - Case 1 (Table 7)

NE XJ QJ DIL TEMP 1 0.0000E+00 0.0000E+00 -0.5300E+01 0.7000E+00 0.2720E+01 0.1000E+01 0.3260E+02 2 0.4872E-01 0.0000E+00 -0.5349E+01 0.7112E+00 0.2677E+01 0.1016E+01 0.3255E+02 10 0.4142E+00 0.0000E+00 -0.5714E+01 0.7952E+00 0.2394E+01 0.1136E+01 0.3224E+02 20 0.8236E+00 0.0000E+00 -0.6123E+01 0.8890E+00 0.2140E+01 0.1269E+01 0.3196E+02 30 0.1194E+01 0.0000E+00 -0.6492E+01 0.9738E+00 0.1953E+01 0.1390E+01 0.3176E+02 40 0.1535E+01 0.0000E+00 -0.6832E+01 0.1052E+01 0.1808E+01 0.1501E+01 0.3160E+02 50 0.1853E+01 0.0000E+00 -0.7148E+01 0.1124E+01 0.1691E+01 0.1604E+01 0.3147E+02 60 0.2152E+01 0.0000E+00 -0.7444E+01 0.1193E+01 0.1593E+01 0.1701E+01 0.3136E+02 70 0.2434E+01 0.0000E+00 -0.7725E+01 0.1257E+01 0.1511E+01 0.1792E+01 0.3127E+02 80 0.2703E+01 0.0000E+00 -0.7991E+01 0.1318E+01 0.1441E+01 0.1879E+01 0.3120E+02 90 0.2960E+01 0.0000E+00 -0.8246E+01 0.1377E+01 0.1379E+01 0.1962E+01 0.3113E+02 100 0.3207E+01 0.0000E+00 -0.8490E+01 0.1433E+01 0.1324E+01 0.2041E+01 0.3107E+02 110 0.3445E+01 0.0000E+00 -0.8724E+01 0.1487E+01 0.1276E+01 0.2118E+01 0.3102E+02 120 0.3674E+01 0.0000E+00 -0.8951E+01 0.1539E+01 0.1232E+01 0.2191E+01 0.3097E+02 130 0.3896E+01 0.0000E+00-0.9169E+01 0.1590E+01 0.1193E+01 0.2262E+01 0.3093E+02 140 0.4111E+01 0.0000E+00-0.9381E+01 0.1638E+01 0.1157E+01 0.2331E+01 0.3089E+02 150 0.4320E+01 0.0000E+00-0.9586E+01 0.1686E+01 0.1124E+01 0.2398E+01 0.3085E+02 160 0.4524E+01 0.0000E+00-0.9786E+01 0.1732E+01 0.1094E+01 0.2463E+01 0.3082E+02 170 0.4722E+01 0.0000E+00 -0.9980E+01 0.1777E+01 0.1066E+01 0.2526E+01 0.3079E+02 180 0.4915E+01 0.0000E+00 -0.1017E+02 0.1821E+01 0.1040E+01 0.2588E+01 0.3076E+02 190 0.5104E+01 0.0000E+00 -0.1035E+02 0.1863E+01 0.1016E+01 0.2648E+01 0.3073E+02 200 0.5289E+01 0.0000E+00-0.1053E+02 0.1905E+01 0.9931E+00 0.2706E+01 0.3071E+02 210 0.5470E+01 0.0000E+00 -0.1071E+02 0.1946E+01 0.9720E+00 0.2763E+01 0.3069E+02 220 0.5647E+01 0.0000E+00 -0.1088E+02 0.1986E+01 0.9521E+00 0.2819E+01 0.3066E+02 230 0.5820E+01 0.0000E+00 -0.1105E+02 0.2025E+01 0.9333E+00 0.2874E+01 0.3064E+02 240 0.5991E+01 0.0000E+00 -0.1122E+02 0.2064E+01 0.9157E+00 0.2928E+01 0.3062E+02 250 0.6158E+01 0.0000E+00 -0.1138E+02 0.2102E+01 0.8989E+00 0.2981E+01 0.3061E+02 260 0.6323E+01 0.0000E+00 -0.1154E+02 0.2139E+01 0.8831E+00 0.3032E+01 0.3059E+02 270 0.6484E+01 0.0000E+00 -0.1170E+02 0.2175E+01 0.8680E+00 0.3083E+01 0.3057E+02 280 0.6644E+01 0.0000E+00 -0.1185E+02 0.2211E+01 0.8537E+00 0.3133E+01 0.3056E+02 290 0.6800E+01 0.0000E+00 -0.1200E+02 0.2246E+01 0.8400E+00 0.3182E+01 0.3054E+02 300 0.6954E+01 0.0000E+00 -0.1215E+02 0.2281E+01 0.8270E+00 0.3230E+01 0.3053E+02 310 0.7106E+01 0.0000E+00 -0.1230E+02 0.2315E+01 0.8145E+00 0.3278E+01 0.3052E+02 320 0.7256E+01 0.0000E+00 -0.1244E+02 0.2349E+01 0.8026E+00 0.3325E+01 0.3050E+02 330 0.7404E+01 0.0000E+00 -0.1258E+02 0.2382E+01 0.7912E+00 0.3371E+01 0.3049E+02 340 0.7550E+01 0.0000E+00 -0.1272E+02 0.2415E+01 0.7802E+00 0.3416E+01 0.3048E+02 350 0.7694E+01 0.0000E+00 -0.1286E+02 0.2447E+01 0.7697E+00 0.3461E+01 0.3047E+02 360 0.7836E+01 0.0000E+00 -0.1300E+02 0.2479E+01 0.7595E+00 0.3505E+01 0.3046E+02 370 0.7976E+01 0.0000E+00 -0.1313E+02 0.2511E+01 0.7498E+00 0.3548E+01 0.3045E+02 380 0.8115E+01 0.0000E+00 -0.1326E+02 0.2542E+01 0.7404E+00 0.3591E+01 0.3044E+02 390 0.8251E+01 0.0000E+00 -0.1339E+02 0.2572E+01 0.7313E+00 0.3633E+01 0.3043E+02 400 0.8387E+01 0.0000E+00 -0.1352E+02 0.2603E+01 0.7226E+00 0.3675E+01 0.3042E+02 410 0.8521E+01 0.0000E+00 -0.1365E+02 0.2633E+01 0.7142E+00 0.3716E+01 0.3041E+02 420 0.8653E+01 0.0000E+00 -0.1378E+02 0.2662E+01 0.7060E+00 0.3757E+01 0.3040E+02 430 0.8784E+01 0.0000E+00 -0.1390E+02 0.2692E+01 0.6981E+00 0.3797E+01 0.3039E+02 440 0.8914E+01 0.0000E+00 -0.1402E+02 0.2720E+01 0.6905E+00 0.3837E+01 0.3038E+02 450 0.9042E+01 0.0000E+00 -0.1414E+02 0.2749E+01 0.6831E+00 0.3876E+01 0.3037E+02 460 0.9169E+01 0.0000E+00 -0.1426E+02 0.2778E+01 0.6759E+00 0.3915E+01 0.3037E+02 470 0.9295E+01 0.0000E+00-0.1438E+02 0.2806E+01 0.6689E+00 0.3953E+01 0.3036E+02


```
480 0.9419E+01 0.0000E+00 -0.1450E+02 0.2833E+01 0.6622E+00 0.3991E+01 0.3035E+02
490 0.9543E+01 0.0000E+00 -0.1462E+02 0.2861E+01 0.6556E+00 0.4029E+01 0.3034E+02
500 0.9665E+01 0.0000E+00 -0.1473E+02 0.2888E+01 0.6492E+00 0.4066E+01 0.3034E+02
510 0.9786E+01 0.0000E+00 -0.1485E+02 0.2915E+01 0.6430E+00 0.4103E+01 0.3033E+02
520 0.9906E+01 0.0000E+00 -0.1496E+02 0.2942E+01 0.6370E+00 0.4139E+01 0.3032E+02
530 0.1003E+02 0.0000E+00 -0.1507E+02 0.2968E+01 0.6311E+00 0.4175E+01 0.3032E+02
540 0.1014E+02 0.0000E+00 -0.1518E+02 0.2995E+01 0.6254E+00 0.4211E+01 0.3031E+02
550 0.1026E+02 0.0000E+00 -0.1529E+02 0.3021E+01 0.6198E+00 0.4246E+01 0.3031E+02
560 0.1038E+02 0.0000E+00 -0.1540E+02 0.3046E+01 0.6144E+00 0.4281E+01 0.3030E+02
570 0.1049E+02 0.0000E+00 -0.1551E+02 0.3072E+01 0.6091E+00 0.4316E+01 0.3030E+02
580 0.1061E+02 0.0000E+00-0.1561E+02 0.3097E+01 0.6039E+00 0.4350E+01 0.3029E+02
590 0.1072E+02 0.0000E+00 -0.1572E+02 0.3123E+01 0.5989E+00 0.4384E+01 0.3028E+02
600 0.1083E+02 0.0000E+00 -0.1582E+02 0.3148E+01 0.5940E+00 0.4418E+01 0.3028E+02
610 0.1094E+02 0.0000E+00 -0.1592E+02 0.3172E+01 0.5891E+00 0.4452E+01 0.3027E+02
620 0.1105E+02 0.0000E+00 -0.1603E+02 0.3197E+01 0.5844E+00 0.4485E+01 0.3027E+02
630 0.1116E+02 0.0000E+00 -0.1613E+02 0.3221E+01 0.5799E+00 0.4518E+01 0.3026E+02
640 0.1127E+02 0.0000E+00-0.1623E+02 0.3245E+01 0.5754E+00 0.4550E+01 0.3026E+02
650 0.1138E+02 0.0000E+00 -0.1633E+02 0.3269E+01 0.5710E+00 0.4582E+01 0.3025E+02
660 0.1149E+02 0.0000E+00 -0.1643E+02 0.3293E+01 0.5667E+00 0.4614E+01 0.3025E+02
670 0.1160E+02 0.0000E+00 -0.1653E+02 0.3317E+01 0.5625E+00 0.4646E+01 0.3025E+02
680 0.1170E+02 0.0000E+00-0.1663E+02 0.3340E+01 0.5584E+00 0.4678E+01 0.3024E+02
690 0.1181E+02 0.0000E+00 -0.1672E+02 0.3364E+01 0.5543E+00 0.4709E+01 0.3024E+02
```

receive of indestration in subsection in

LNGC Thermal Discharge - Case 2 (Table 7)

		Department of the					
NE	X1 A1	ZJ RJ	QJ	DIL TEN	1P		200000 104
1 (0.0000E+00 (0.0000E+00 -	0.6350E+01 (0.7000E+00	0.2720E+01	0.1000E+01	0.3260E+02
2 ().4872E-01 C	0.0000E+00 -0	0.6399E+01 0	.7112E+00 ().2677E+01 C	0.1016E+01 ().3255E+02
10	0.4142E+00	0.0000E+00	-0.6764E+01	0.7952E+00	0.2394E+01	0.1136E+01	0.3224E+02
20	0.8236E+00	0.0000E+00	-0.7173E+01	0.8890E+00	0.2140E+01	0.1269E+01	0.3196E+02
30	0.1194E+01	0.0000E+00	-0.7542E+01	0.9738E+00	0.1953E+01	0.1390E+01	0.3176E+02
40	0.1535E+01	0.0000E+00	-0.7882E+01	0.1052E+01	0.1808E+01	0.1501E+01	0.3160E+02
50	0.1853E+01	0.0000E+00	-0.8198E+01	0.1124E+01	0.1691E+01	0.1604E+01	0.3147E+02
60	0.2152E+01	0.0000E+00	-0.8494E+01	0.1193E+01	0.1593E+01	0.1701E+01	0.3136E+02
70	0.2434E+01	0.0000E+00	-0.8775E+01	0.1257E+01	0.1511E+01	0.1792E+01	0.3127E+02
80	0.2703E+01	0.0000E+00	-0.9041E+01	0.1318E+01	0.1441E+01	0.1879E+01	0.3120E+02
90	0.2960E+01	0.0000E+00	-0.9296E+01	0.1377E+01	0.1379E+01	0.1962E+01	0.3113E+02
100	0.3207E+01	0.0000E+00	-0.9540E+01	0.1433E+01	0.1324E+01	0.2041E+01	0.3107E+02
110	0.3445E+01	0.0000E+00	-0.9774E+01	0.1487E+01	0.1276E+01	0.2118E+01	0.3102E+02
120	0.3674E+01	0.0000E+00	-0.1000E+02	0.1539E+01	0.1232E+01	0.2191E+01	0.3097E+02
130	0.3896E+01	0.0000E+00	-0.1022E+02	0.1590E+01	0.1193E+01	0.2262E+01	0.3093E+02
140	0.4111E+01	0.0000E+00	-0.1043E+02	0.1638E+01	0.1157E+01	0.2331E+01	0.3089E+02
150	0.4320E+01	0.0000E+00	-0.1064E+02	0.1686E+01	0.1124E+01	0.2398E+01	0.3085E+02
160	0.4524E+01	0.0000E+00	-0.1084E+02	0.1732E+01	0.1094E+01	0.2463E+01	0.3082E+02
170	0.4722E+01	0.0000E+00	-0.1103E+02	0.1777E+01	0.1066E+01	0.2526E+01	0.3079E+02
180	0.4915E+01	0.0000E+00	-0.1122E+02	0.1821E+01	0.1040E+01	0.2588E+01	0.3076E+02
190	0.5104E+01	0.0000E+00	-0.1140E+02	0.1863E+01	0.1016E+01	0.2648E+01	0.3073E+02
200	0.5289E+01	0.0000E+00	-0.1158E+02	0.1905E+01	0.9931E+00	0.2706E+01	0.3071E+02
210	0.5470E+01	0.0000E+00	-0.1176E+02	0.1946E+01	0.9720E+00	0.2763E+01	0.3069E+02
220	0.5647E+01	0.0000E+00	-0.1193E+02	0.1986E+01	0.9521E+00	0.2819E+01	0.3066E+02
230	0.5820E+01	0.0000E+00	-0.1210E+02	0.2025E+01	0.9333E+00	0.2874E+01	0.3064E+02
240	0.5991E+01	0.0000E+00	-0.1227E+02	0.2064E+01	0.9157E+00	0.2928E+01	0.3062E+02
250	0.6158E+01	0.0000E+00	-0.1243E+02	0.2102E+01	0.8989E+00	0.2981E+01	0.3061E+02
260	0.6323E+01	0.0000E+00	-0.1259E+02	0.2139E+01	0.8831E+00	0.3032E+01	0.3059E+02
270	0.6484E+01	0.0000E+00	-0.1275E+02	0.2175E+01	0.8680E+00	0.3083E+01	0.3057E+02
280	0.6644E+01	0.0000E+00	-0.1290E+02	0.2211E+01	0.8537E+00	0.3133E+01	0.3056E+02
290	0.6800E+01	0.0000E+00	-0.1305E+02	0.2246E+01	0.8400E+00	0.3182E+01	0.3054E+02
300	0.6954E+01	0.0000E+00	-0.1320E+02	0.2281E+01	0.8270E+00	0.3230E+01	0.3053E+02
310	0.7106E+01	0.0000E+00	-0.1335E+02	0.2315E+01	0.8145E+00	0.3278E+01	0.3052E+02
320	0.7256E+01	0.0000E+00	-0.1349E+02	0.2349E+01	0.8026E+00	0.3325E+01	0.3050E+02
330	0.7404E+01	0.0000E+00	-0.1363E+02	0.2382E+01	0.7912E+00	0.3371E+01	0.3049E+02
340	0.7550E+01	0.0000E+00	-0.1377E+02	0.2415E+01	0.7802E+00	0.3416E+01	0.3048E+02
350	0.7694E+01	0.0000E+00	-0.1391E+02	0.2447E+01	0.7697E+00	0.3461E+01	0.3047E+02
360	0.7836E+01	0.0000E+00	-0.1405E+02	0.2479E+01	0.7595E+00	0.3505E+01	0.3046E+02
370	0.7976E+01	0.0000E+00	-0.1418E+02	0.2511E+01	0.7498E+00	0.3548E+01	0.3045E+02
380	0.8115E+01	0.0000E+00	-0.1431E+02	0.2542E+01	0.7404E+00	0.3591E+01	0.3044E+02
			-0.1444E+02				
			-0.1457E+02				
			-0.1470E+02				
420	0.8653E+01	0.0000E+00	-0.1483E+02	0.2662E+01	0.7060E+00	0.3757E+01	0.3040E+02
			-0.1495E+02				
			-0.1507E+02				
			-0.1519E+02				
460	U.9169E+01	. 0.0000E+00	-0.1531E+02	0.2778E+01	0.6759E+00	0.3915E+01	0.3037E+02
4/0	U.9295E+01	. U.UUU0E+00	-0.1543E+02	0.2806E+01	0.6689E+00	0.3953E+01	0.3036E+02

4800.9419E+010.0000E+00 -0.1555E+020.2833E+010.6622E+000.3991E+010.3035E+024900.9543E+010.0000E+00 -0.1567E+020.2861E+010.6556E+000.4029E+010.3034E+025000.9665E+010.0000E+00 -0.1578E+020.2888E+010.6492E+000.4066E+010.3034E+025100.9786E+010.0000E+00 -0.1590E+020.2915E+010.6430E+000.4103E+010.3033E+025200.9906E+010.0000E+00 -0.1601E+020.2942E+010.6370E+000.4139E+010.3032E+025300.1003E+020.0000E+00 -0.1612E+020.2968E+010.6311E+000.4175E+010.3032E+025400.1014E+020.0000E+00 -0.1623E+020.2995E+010.6254E+000.4211E+010.3031E+025500.1026E+020.0000E+00 -0.1645E+020.3021E+010.6198E+000.4246E+010.3031E+025600.1038E+020.0000E+00 -0.1665E+020.3072E+010.6091E+000.4316E+010.3030E+025800.1061E+020.0000E+00 -0.1666E+020.3097E+010.6039E+000.4350E+010.3029E+025900.1072E+020.0000E+00 -0.1677E+020.3123E+010.5989E+000.4418E+010.3028E+026020.1085E+020.0000E+00 -0.1689E+020.3148E+010.5930E+000.4425E+010.3028E+02

AND THE PERSON NAMED AND ADDRESS OF THE

LNGC Thermal Discharge - Case 3 (Table 7)

NE	XJ YJ	ZJ RJ	QJ	DIL TEN	ΛP		
1	0.0000E+00	0.0000E+00 -0	.7400E+01 (0.7000E+00	0.2720F+01	0.1000F+01	0.3260E±02
2	0.4872E-01 (0.0000E+00 -0.	7449E+01 C	0.7112E+00 (0.2677F+01 (0.1000E+01	32555+02
10	0.4142E+00	0.0000E+00 -0	0.7814E+01	0.7952E+00	0.2394F+01	0.1136F+01	U 3337E+U2
20	0.8236E+00	0.0000E+00 -0	0.8223E+01	0.8890F+00	0.2140F+01	0.1150E+01	0.32246+02
30	0.1194E+01	0.0000E+00 -0	0.8592E+01	0.9738F+00	0.1953F+01	0.1209E+01	0.31366+02
40	0.1535E+01	0.0000E+00 -0	0.8932E+01	0.1052F+01	0.1808F+01	0.1590E+01	0.31766+02
50	0.1853E+01	0.0000E+00 -0).9248E+01	0.1124F+01	0.1691F+01	0.15012101	0.3100E+02
60	0.2152E+01	0.0000E+00 -0).9544E+01	0.1193F+01	0.1593E+01	0.1004E+01	0.314/6+02
70	0.2434E+01	0.0000E+00 -0).9825E+01	0.1257E+01	0.1511F+01	0.17012101	0.3130E+02
80	0.2703E+01	0.0000E+00 -0	0.1009E+02	0.1318F+01	0.1441F+01	0.17325101	0.31276+02
90	0.2960E+01	0.0000E+00 -0	0.1035E+02	0.1377E+01	0.1379F+01	0.1962E+01	0.31200+02
100	0.3207E+01	0.0000E+00 -	0.1059E+02	0.1433E+01	0.1324F+01	0.2041F+01	0.31131102
110	0.3445E+01	0.0000E+00 -	0.1082E+02	0.1487E+01	0.1276F+01	0.2041E+01	0.3107E+02
120	0.3674E+01	0.0000E+00 -	0.1105E+02	0.1539E+01	0.1232F+01	0.2191F+01	0.3102E102
130	0.3896E+01	0.0000E+00 -	0.1127E+02	0.1590E+01	0.1193E+01	0.2262F+01	0.3097E+02
140	0.4111E+01	0.0000E+00 -	0.1148E+02	0.1638E+01	0.1157F+01	0.2331F+01	0.3033E+02
150	0.4320E+01	0.0000E+00 -	0.1169E+02	0.1686E+01	0.1124E+01	0.2398F+01	0.3085E+02
160	0.4524E+01	0.0000E+00 -	0.1189E+02	0.1732E+01	0.1094E+01	0.2463F+01	0.3082F+02
170	0.4722E+01	0.0000E+00 -	0.1208E+02	0.1777E+01	0.1066E+01	0.2526F+01	0.3079F+02
180	0.4915E+01	0.0000E+00 -	0.1227E+02	0.1821E+01	0.1040E+01	0.2588E+01	0.3076F+02
190	0.5104E+01	0.0000E+00 -	0.1245E+02	0.1863E+01	0.1016E+01	0.2648E+01	0.3073F+02
200	0.5289E+01	0.0000E+00 -	0.1263E+02	0.1905E+01	0.9931E+00	0.2706E+01	0.3071F+02
210	0.5470E+01	0.0000E+00 -	0.1281E+02	0.1946E+01	0.9720E+00	0.2763E+01	0.3069F+02
220	0.5647E+01	0.0000E+00 -	0.1298E+02	0.1986E+01	0.9521E+00	0.2819E+01	0.3066F+02
230	0.5820E+01	0.0000E+00 -	0.1315E+02	0.2025E+01	0.9333E+00	0.2874E+01	0.3064F+02
240	0.5991E+01	0.0000E+00 -	0.1332E+02	0.2064E+01	0.9157E+00	0.2928E+01	0.3062F+02
250	0.6158E+01	0.0000E+00 -(0.1348E+02	0.2102E+01	0.8989E+00	0.2981E+01	0.3061F+02
260	0.6323E+01	0.0000E+00 -0	0.1364E+02	0.2139E+01	0.8831E+00	0.3032E+01	0.3059F+02
270	0.6484E+01	0.0000E+00 -(0.1380E+02	0.2175E+01	0.8680E+00	0.3083E+01	0.3057F+02
280	0.6644E+01	0.0000E+00 -(0.1395E+02	0.2211E+01	0.8537E+00	0.3133E+01	0.3056F+02
290	0.6800E+01	0.0000E+00 -	0.1410E+02	0.2246E+01	0.8400E+00	0.3182E+01	0.3054F+02
300	0.6954E+01	0.0000E+00 -	0.1425E+02	0.2281E+01	0.8270E+00	0.3230E+01	0.3053F+02
310	0.7106E+01	0.0000E+00 -	0.1440E+02	0.2315E+01	0.8145E+00	0.3278E+01	0.3052E+02
320	0.7256E+01	0.0000E+00 -	0.1454E+02	0.2349E+01	0.8026E+00	0.3325E+01	0.3050E+02
330	0.7404E+01	0.0000E+00 -	0.1468E+02	0.2382E+01	0.7912E+00	0.3371E+01	0.3049E+02
340	0.7550E+01	0.0000E+00 -	0.1482E+02	0.2415E+01	0.7802E+00	0.3416E+01	0.3048E+02
350	0.7694E+01	0.0000E+00 -	0.1496E+02	0.2447E+01	0.7697E+00	0.3461E+01	0.3047E+02
360	0.7836E+01	0.0000E+00 -	0.1510E+02	0.2479E+01	0.7595E+00	0.3505E+01	0.3046E+02
370	0.7976E+01	0.0000E+00 -	0.1523E+02	0.2511E+01	0.7498E+00	0.3548E+01	0.3045E+02
380	0.8115E+01	0.0000E+00 -	0.1536E+02	0.2542E+01	0.7404E+00	0.3591E+01	0.3044E+02
390	0.8251E+01	0.0000E+00 -	0.1549E+02	0.2572E+01	0.7313E+00	0.3633E+01	0.3043E+02
400	0.8387E+01	0.0000E+00 -	0.1562E+02	0.2603E+01	0.7226E+00	0.3675E+01	0.3042E+02
410	0.8521E+01	0.0000E+00 -	0.1575E+02	0.2633E+01	0.7142E+00	0.3716E+01	0.3041E+02
420	0.8653E+01	0.0000E+00 -	0.1588E+02	0.2662E+01	0.7060E+00	0.3757E+01	0.3040E+02
430	0.8/84E+01	0.0000E+00 -	0.1600E+02	0.2692E+01	0.6981E+00	0.3797E+01	0.3039E+02
440	0.8914E+01	0.0000E+00 -	0.1612E+02	0.2720E+01	0.6905E+00	0.3837E+01	0.3038E+02
450	0.9042E+01	0.0000E+00 -	0.1624E+02	0.2749E+01	0.6831E+00	0.3876E+01	0.3037E+02
460	0.9169E+01	0.0000E+00 -	0.1636E+02	0.2778E+01	0.6.759E+00	0.3915E+01	0.3037E+02
4/0	0.9295E+01	0.0000E+00 -	U.1648E+02	0.2806E+01	0.6689E+00	0.3953E+01	0.3036E+02

480 0.9419E+01 0.0000E+00 -0.1660E+02 0.2833E+01 0.6622E+00 0.3991E+01 0.3035E+02 490 0.9543E+01 0.0000E+00 -0.1672E+02 0.2861E+01 0.6556E+00 0.4029E+01 0.3034E+02 500 0.9665E+01 0.0000E+00 -0.1683E+02 0.2888E+01 0.6492E+00 0.4066E+01 0.3034E+02 510 0.9786E+01 0.0000E+00 -0.1695E+02 0.2915E+01 0.6430E+00 0.4103E+01 0.3033E+02 520 0.9906E+01 0.0000E+00 -0.1706E+02 0.2942E+01 0.6370E+00 0.4139E+01 0.3032E+02

LNGC Thermal Discharge - Case 4 (Table 7)

```
YJ ZJ RJ QJ DIL
                                           TEMP
 1 0.0000E+00 0.0000E+00 -0.5300E+01 0.7000E+00 0.2720E+01 0.1000E+01 0.3260E+02
 2 0.4861E-01 0.4630E-04 -0.5349E+01 0.7128E+00 0.2671E+01 0.1018E+01 0.3255E+02
10 0.4101E+00 0.1839E-02 -0.5710E+01 0.8091E+00 0.2352E+01 0.1156E+01 0.3220E+02
20 0.8093E+00 0.6821E-02 -0.6108E+01 0.9170E+00 0.2075E+01 0.1309E+01 0.3189E+02
30 0.1166E+01 0.1399E-01 -0.6464E+01 0.1015E+01 0.1874E+01 0.1449E+01 0.3167E+02
40 0.1492E+01 0.2279E-01 -0.6789E+01 0.1106E+01 0.1720E+01 0.1578E+01 0.3150E+02
50 0.1793E+01 0.3287E-01 -0.7088E+01 0.1190E+01 0.1597E+01 0.1699E+01 0.3137E+02
60 0.2074E+01 0.4400E-01-0.7367E+01 0.1271E+01 0.1496E+01 0.1813E+01 0.3126E+02
70 0.2339E+01 0.5599E-01 -0.7630E+01 0.1347E+01 0.1411E+01 0.1921E+01 0.3116E+02
80 0.2589E+01 0.6871E-01-0.7878E+01 0.1420E+01 0.1338E+01 0.2024E+01 0.3108E+02
90 0.2827E+01 0.8207E-01 -0.8113E+01 0.1490E+01 0.1275E+01 0.2124E+01 0.3101E+02
100 0.3054E+01 0.9598E-01-0.8338E+01 0.1557E+01 0.1219E+01 0.2219E+01 0.3095E+02
110 0.3272E+01 0.1104E+00 -0.8553E+01 0.1622E+01 0.1170E+01 0.2312E+01 0.3090E+02
120 0.3482E+01 0.1252E+00 -0.8760E+01 0.1686E+01 0.1126E+01 0.2402E+01 0.3085E+02
130 0.3684E+01 0.1404E+00 -0.8959E+01 0.1747E+01 0.1086E+01 0.2489E+01 0.3081E+02
140 0.3879E+01 0.1560E+00 -0.9151E+01 0.1807E+01 0.1050E+01 0.2573E+01 0.3077E+02
150 0.4068E+01 0.1719E+00 -0.9337E+01 0.1865E+01 0.1017E+01 0.2656E+01 0.3073E+02
160 0.4252E+01 0.1881E+00-0.9517E+01 0.1922E+01 0.9865E+00 0.2737E+01 0.3070E+02
170 0.4430E+01 0.2046E+00 -0.9691E+01 0.1978E+01 0.9585E+00 0.2815E+01 0.3067E+02
180 0.4603E+01 0.2213E+00 -0.9861E+01 0.2033E+01 0.9326E+00 0.2892E+01 0.3064E+02
190 0.4772E+01 0.2383E+00-0.1003E+02 0.2086E+01 0.9085E+00 0.2968E+01 0.3061E+02
200 0.4936E+01 0.2555E+00 -0.1019E+02 0.2138E+01 0.8860E+00 0.3042E+01 0.3059E+02
210 0.5097E+01 0.2729E+00 -0.1034E+02 0.2190E+01 0.8650E+00 0.3115E+01 0.3056E+02
220 0.5254E+01 0.2905E+00-0.1050E+02 0.2241E+01 0.8453E+00 0.3186E+01 0.3054E+02
230 0.5407E+01 0.3082E+00 -0.1065E+02 0.2290E+01 0.8268E+00 0.3256E+01 0.3052E+02
240 0.5557E+01 0.3261E+00 -0.1079E+02 0.2339E+01 0.8093E+00 0.3325E+01 0.3050E+02
250 0.5705E+01 0.3442E+00 -0.1093E+02 0.2388E+01 0.7928E+00 0.3394E+01 0.3048E+02
260 0.5849E+01 0.3624E+00 -0.1107E+02 0.2435E+01 0.7771E+00 0.3461E+01 0.3047E+02
270 0.5990E+01 0.3808E+00 -0.1121E+02 0.2482E+01 0.7623E+00 0.3527E+01 0.3045E+02
280 0.6129E+01 0.3993E+00 -0.1135E+02 0.2529E+01 0.7482E+00 0.3592E+01 0.3044E+02
290 0.6266E+01 0.4180E+00 -0.1148E+02 0.2574E+01 0.7348E+00 0.3656E+01 0.3042E+02
300 0.6400E+01 0.4367E+00 -0.1161E+02 0.2619E+01 0.7220E+00 0.3719E+01 0.3041E+02
310 0.6532E+01 0.4556E+00 -0.1173E+02 0.2664E+01 0.7098E+00 0.3782E+01 0.3039E+02
320 0.6661E+01 0.4746E+00 -0.1186E+02 0.2708E+01 0.6981E+00 0.3844E+01 0.3038E+02
330 0.6789E+01 0.4937E+00 -0.1198E+02 0.2751E+01 0.6870E+00 0.3905E+01 0.3037E+02
340 0.6915E+01 0.5129E+00 -0.1210E+02 0.2794E+01 0.6763E+00 0.3965E+01 0.3036E+02
350 0.7039E+01 0.5322E+00 -0.1222E+02 0.2837E+01 0.6660E+00 0.4025E+01 0.3035E+02
360 0.7161E+01 0.5516E+00 -0.1234E+02 0.2879E+01 0.6562E+00 0.4084E+01 0.3033E+02
370 0.7281E+01 0.5711E+00 -0.1245E+02 0.2921E+01 0.6467E+00 0.4143E+01 0.3032E+02
380 0.7399E+01 0.5906E+00 -0.1257E+02 0.2962E+01 0.6376E+00 0.4201E+01 0.3031E+02
390 0.7516E+01 0.6103E+00 -0.1268E+02 0.3003E+01 0.6288E+00 0.4258E+01 0.3030E+02
400 0.7632E+01 0.6300E+00 -0.1279E+02 0.3044E+01 0.6203E+00 0.4315E+01 0.3030E+02
410 0.7746E+01 0.6499E+00 -0.1290E+02 0.3084E+01 0.6121E+00 0.4371E+01 0.3029E+02
420 0.7858E+01 0.6697E+00 -0.1300E+02 0.3124E+01 0.6042E+00 0.4426E+01 0.3028E+02
430 0.7969E+01 0.6897E+00-0.1311E+02 0.3163E+01 0.5966E+00 0.4482E+01 0.3027E+02
440 0.8079E+01 0.7097E+00 -0.1321E+02 0.3202E+01 0.5892E+00 0.4536E+01 0.3026E+02
450 0.8187E+01 0.7298E+00 -0.1331E+02 0.3241E+01 0.5821E+00 0.4591E+01 0.3025E+02
460 0.8294E+01 0.7500E+00 -0.1342E+02 0.3279E+01 0.5752E+00 0.4644E+01 0.3025E+02
470 0.8400E+01 0.7702E+00 -0.1352E+02 0.3318E+01 0.5684E+00 0.4698E+01 0.3024E+02
```



```
480 0.8505E+01 0.7905E+00 -0.1361E+02 0.3355E+01 0.5619E+00 0.4751E+01 0.3023E+02
490 0.8609E+01 0.8109E+00 -0.1371E+02 0.3393E+01 0.5556E+00 0.4803E+01 0.3022E+02
500 0.8711E+01 0.8313E+00 -0.1381E+02 0.3430E+01 0.5495E+00 0.4855E+01 0.3022E+02
510 0.8812E+01 0.8517E+00 -0.1390E+02 0.3467E+01 0.5436E+00 0.4907E+01 0.3021E+02
520 0.8913E+01 0.8723E+00 -0.1400E+02 0.3504E+01 0.5378E+00 0.4958E+01 0.3021E+02
530 0.9012E+01 0.8928E+00 -0.1409E+02 0.3541E+01 0.5321E+00 0.5009E+01 0.3020E+02
540 0.9110E+01 0.9135E+00 -0.1418E+02 0.3577E+01 0.5267E+00 0.5060E+01 0.3019E+02
550 0.9208E+01 0.9341E+00 -0.1427E+02 0.3613E+01 0.5213E+00 0.5110E+01 0.3019E+02
560 0.9304E+01 0.9549E+00 -0.1436E+02 0.3649E+01 0.5161E+00 0.5160E+01 0.3018E+02
570 0.9399E+01 0.9756E+00 -0.1445E+02 0.3684E+01 0.5111E+00 0.5210E+01 0.3018E+02
580 0.9494E+01 0.9965E+00 -0.1454E+02 0.3720E+01 0.5062E+00 0.5259E+01 0.3017E+02
590 0.9588E+01 0.1017E+01 -0.1463E+02 0.3755E+01 0.5014E+00 0.5308E+01 0.3017E+02
600 0.9680E+01 0.1038E+01 -0.1471E+02 0.3790E+01 0.4967E+00 0.5356E+01 0.3016E+02
610 0.9772E+01 0.1059E+01 -0.1480E+02 0.3825E+01 0.4921E+00 0.5405E+01 0.3016E+02
620 0.9863E+01 0.1080E+01 -0.1488E+02 0.3859E+01 0.4876E+00 0.5453E+01 0.3015E+02
630 0.9954E+01 0.1101E+01 -0.1497E+02 0.3893E+01 0.4833E+00 0.5500E+01 0.3015E+02
640 0.1004E+02 0.1122E+01 -0.1505E+02 0.3927E+01 0.4790E+00 0.5548E+01 0.3014E+02
650 0.1013E+02 0.1143E+01 -0.1513E+02 0.3961E+01 0.4748E+00 0.5595E+01 0.3014E+02
660 0.1022E+02 0.1165E+01 -0.1521E+02 0.3995E+01 0.4707E+00 0.5642E+01 0.3013E+02
670 0.1031E+02 0.1186E+01 -0.1529E+02 0.4029E+01 0.4668E+00 0.5689E+01 0.3013E+02
680 0.1039E+02 0.1207E+01 -0.1537E+02 0.4062E+01 0.4629E+00 0.5735E+01 0.3012E+02
690 0.1048E+02 0.1228E+01 -0.1545E+02 0.4095E+01 0.4590E+00 0.5781E+01 0.3012E+02
700 0.1057E+02 0.1250E+01 -0.1553E+02 0.4128E+01 0.4553E+00 0.5827E+01 0.3011E+02
710 0.1065E+02 0.1271E+01 -0.1561E+02 0.4161E+01 0.4517E+00 0.5873E+01 0.3011E+02
720 0.1073E+02 0.1292E+01 -0.1568E+02 0.4194E+01 0.4481E+00 0.5918E+01 0.3011E+02
730 0.1082E+02 0.1314E+01 -0.1576E+02 0.4227E+01 0.4446E+00 0.5963E+01 0.3010E+02
740 0.1090E+02 0.1335E+01 -0.1584E+02 0.4259E+01 0.4411E+00 0.6008E+01 0.3010E+02
750 0.1098E+02 0.1357E+01 -0.1591E+02 0.4291E+01 0.4377E+00 0.6053E+01 0.3010E+02
757 0.1104E+02 0.1372E+01 -0.1596E+02 0.4312E+01 0.4356E+00 0.6082E+01 0.3009E+02
```


LNGC Thermal Discharge - Case 5 (Table 7)

NE	XI AI	ZJ RJ QJ	DIL TEI	MP			
1 (J.0000E+00 (0.0000E+00 -0.6350E+0	1 0.7000E+00	0.2720E+01	0.1000F+01	0.3260F+02	
2 (J.4861E-01 ().4630E-04 -0.6399E+01	0.7128E+00	0.2671E+01 (0.1018F+01 C	3255F+02	
TO	0.4101E+00	0.1839E-02 -0.6760E+0	0.8091E+00	0.2352E+01	0.1156F+01	0.3220F+02	
20	0.8093E+00	0.6821E-02 -0.7158E+0	0.9170E+00	0.2075E+01	0.1309F+01	0.3189F+02	
30	0.1166E+01	0.1399E-01 -0.7514E+0	0.1015E+01	0.1874E+01	0.1449E+01	0.3167E+02	
40	0.1492E+01	0.2279E-01 -0.7839E+0	0.1106E+01	0.1720E+01	0.1578E+01	0.3150E+02	
50	0.1/93E+01	0.3287E-01 -0.8138E+0	0.1190E+01	0.1597E+01	0.1699E+01	0.3137E+02	
50	0.2074E+01	0.4400E-01 -0.8417E+0	0.1271E+01	0.1496E+01	0.1813E+01	0.3126E+02	
70	0.2339E+01	0.5599E-01 -0.8680E+0	0.1347E+01	0.1411E+01	0.1921E+01	0.3116E+02	
08	0.2589E+01	0.6871E-01 -0.8928E+0	0.1420E+01	0.1338E+01	0.2024E+01	0.3108E+02	
90	0.2827E+01	0.8207E-01 -0.9163E+0	0.1490E+01	0.1275E+01	0.2124E+01	0.3101E+02	
100	0.3054E+01	0.9598E-01 -0.9388E+	01 0.1557E+01	0.1219E+01	0.2219E+01	0.3095E+02	
110	0.3272E+01	0.1104E+00 -0.9603E+	01 0.1622E+0	1 0.1170E+01	L 0.2312E+01	0.3090E+02	
120	0.3482E+01	0.1252E+00 -0.9810E+	01 0.1686E+0	1 0.1126E+01	0.2402E+01	0.3085E+02	
130	0.3684E+01	0.1404E+00 -0.1001E+	02 0.1747E+0	1 0.1086E+01	0.2489E+01	0.3081E+02	
140	0.3879E+01	0.1560E+00 -0.1020E+	02 0.1807E+0	1 0.1050E+01	0.2573E+01	0.3077E+02	
150	0.4068E+01	0.1719E+00 -0.1039E+	02 0.1865E+0:	1 0.1017E+01	0.2656E+01	0.3073E+02	
160	0.4252E+01	0.1881E+00 -0.1057E+	02 0.1922E+0:	1 0.9865E+00	0.2737E+01	0.3070E+02	
170	0.4430E+01	0.2046E+00 -0.1074E+	02 0.1978E+0	1 0.9585E+00	0.2815E+01	0.3067E+02	
180	0.4603E+01	0.2213E+00 -0.1091E+	02 0.2033E+0	1 0.9326E+00	0.2892E+01	0.3064E+02	
190	0.4772E+01	0.2383E+00 -0.1108E+	02 0.2086E+0	1 0.9085E+00	0.2968E+01	0.3061E+02	
200	0.4936E+01	0.2555E+00 -0.1124E+	02 0.2138E+0	1 0.8860E+00	0.3042E+01	0.3059E+02	
210	0.5097E+01	0.2729E+00 -0.1139E+	02 0.2190E+0:	1 0.8650E+00	0.3115E+01	0.3056E+02	
220	0.5254E+01	0.2905E+00 -0.1155E+	02 0.2241E+0:	L 0.8453E+00	0.3186E+01	0.3054E+02	
230	0.5407E+01	0.3082E+00 -0.1170E+	02 0.2290E+03	L 0.8268E+00	0.3256F+01	0.3052F+02	
240	0.5557E+01	0.3261E+00 -0.1184E+	02 0.2339E+03	L 0.8093E+00	0.3325E+01	0.3050F+02	
250	0.5705E+01	0.3442E+00 -0.1198E+	02 0.2388E+01	L 0.7928E+00	0.3394E+01	0.3048F+02	
260	0.5849E+01	0.3624E+00 -0.1212E+	02 0.2435E+01	L 0.7771E+00	0.3461E+01	0.3047E+02	
270	0.5990E+01	0.3808E+00 -0.1226E+	02 0.2482E+01	L 0.7623E+00	0.3527E+01	0.3045E+02	
280	0.6129E+01	0.3993E+00 -0.1240E+	02 0.2529E+01	0.7482E+00	0.3592E+01	0.3044E+02	
290	0.6266E+01	0.4180E+00 -0.1253E+	02 0.2574E+01	L 0.7348E+00	0.3656E+01	0.3042E+02	
300	0.6400E+01	0.4367E+00 -0.1266E+	02 0.2619E+01	L 0.7220E+00	0.3719E+01	0.3041E+02	
310	0.6532E+01	0.4556E+00 -0.1278E+	02 0.2664E+01	L 0.7098E+00	0.3782E+01	0.3039E+02	
320	0.6661E+01	0.4746E+00 -0.1291E+	02 0.2708E+03	0.6981E+00	0.3844E+01	0.3038E+02	
330	0.6789E+01	0.4937E+00 -0.1303E+	02 0.2751E+01	0.6870E+00	0.3905E+01	0.3037E+02	
340	0.6915E+01	0.5129E+00 -0.1315E+	02 0.2794E+01	0.6763E+00	0.3965E+01	0.3036E+02	
350	0.7039E+01	0.5322E+00 -0.1327E+	02 0.2837E+01	0.6660E+00	0.4025E+01	0.3035F+02	
360	0.7161E+01	0.5516E+00 -0.1339E+	02 0.2879E+01	0.6562E+00	0.4084E+01	0.3033E+02	
370	0.7281E+01	0.5711E+00 -0.1350E+	02 0.2921E+01	0.6467E+00	0.4143E+01	0.3032E+02	
380	0.7399E+01	0.5906E+00 -0.1362E+	02 0.2962E+01	0.6376E+00	0.4201E+01	0.3031E+02	
390	0.7516E+01	0.6103E+00 -0.1373E+	02 0.3003E+01	0.6288E+00	0.4258E+01	0.3030E+02	
400	0.7632E+01	0.6300E+00 -0.1384E+	02 0.3044E+01	0.6203E+00	0.4315E+01	0.3030E+02	
410	0.7746E+01	0.6499E+00 -0.1395E+	02 0.3084E+01	0.6121E+00	0.4371E+01	0.3029E+02	
420	0.7858E+01	0.6697E+00 -0.1405E+	02 0.3124E+01	0.6042E+00	0.4426E+01	0.3028E+02	
430	0.7969E+01	0.6897E+00 -0.1416E+	02 0.3163E+01	0.5966E+00	0.4482E+01	0.3027E+02	
440	0.8079E+01	0.7097E+00 -0.1426E+	02 0.3202E+03	0.5892E+00	0.4536E+01	0.3026F+02	
450	0.8187E+01	0.7298E+00 -0.1436E+	02 0.3241E+01	0.5821E+00	0.4591E+01	0.3025E+02	
460	0.8294E+01	0.7500E+00 -0.1447E+	02 0.3279E+01	L 0.5752E+00	0.4644E+01	0.3025E+02	
470	0.8400E+01	0.7702E+00 -0.1457E+	02 0.3318E+01	0.5684E+00	0.4698E+01	0.3024E+02	
	9						


```
480 0.8505E+01 0.7905E+00 -0.1466E+02 0.3355E+01 0.5619E+00 0.4751E+01 0.3023E+02
490 0.8609E+01 0.8109E+00-0.1476E+02 0.3393E+01 0.5556E+00 0.4803E+01 0.3022E+02
500 0.8711E+01 0.8313E+00 -0.1486E+02 0.3430E+01 0.5495E+00 0.4855E+01 0.3022E+02
510 0.8812E+01 0.8517E+00 -0.1495E+02 0.3467E+01 0.5436E+00 0.4907E+01 0.3021E+02
520 0.8913E+01 0.8723E+00 -0.1505E+02 0.3504E+01 0.5378E+00 0.4958E+01 0.3021E+02
530 0.9012E+01 0.8928E+00 -0.1514E+02 0.3541E+01 0.5321E+00 0.5009E+01 0.3020E+02
540 0.9110E+01 0.9135E+00 -0.1523E+02 0.3577E+01 0.5267E+00 0.5060E+01 0.3019E+02
550 0.9208E+01 0.9341E+00 -0.1532E+02 0.3613E+01 0.5213E+00 0.5110E+01 0.3019E+02
560 0.9304E+01 0.9549E+00 -0.1541E+02 0.3649E+01 0.5161E+00 0.5160E+01 0.3018E+02
570 0.9399E+01 0.9756E+00 -0.1550E+02 0.3684E+01 0.5111E+00 0.5210E+01 0.3018E+02
580 0.9494E+01 0.9965E+00-0.1559E+02 0.3720E+01 0.5062E+00 0.5259E+01 0.3017E+02
590 0.9588E+01 0.1017E+01-0.1568E+02 0.3755E+01 0.5014E+00 0.5308E+01 0.3017E+02
600 0.9680E+01 0.1038E+01 -0.1576E+02 0.3790E+01 0.4967E+00 0.5356E+01 0.3016E+02
610 0.9772E+01 0.1059E+01 -0.1585E+02 0.3825E+01 0.4921E+00 0.5405E+01 0.3016E+02
620 0.9863E+01 0.1080E+01 -0.1593E+02 0.3859E+01 0.4876E+00 0.5453E+01 0.3015E+02
630 0.9954E+01 0.1101E+01-0.1602E+02 0.3893E+01 0.4833E+00 0.5500E+01 0.3015E+02
640 0.1004E+02 0.1122E+01-0.1610E+02 0.3927E+01 0.4790E+00 0.5548E+01 0.3014E+02
650 0.1013E+02 0.1143E+01 -0.1618E+02 0.3961E+01 0.4748E+00 0.5595E+01 0.3014E+02
657 0.1019E+02 0.1158E+01 -0.1624E+02 0.3983E+01 0.4722E+00 0.5625E+01 0.3013E+02
```

- \$2.0kd 16-8 43 1 70 1

LNGC Thermal Discharge - Case 6 (Table 7)

NE XJ YJ	ZJ RJ QJ	DIL TEN	MP		
1 0.0000E+00	0.0000E+00 -0.7400E+01	0.7000F+00	0.2720F+01	0.10005401	0.22605.02
2 0.48616-01 (0.4630E-04-0.7449E+01 (0.7128E+00 (0.2671E+01 C	1018F+01 (3255E±02
10 0.41016+00	0.1839E-02-0.7810E+01	0.8091E+00	0.2352F+01	0.1156F+01	0 33305+03
20 0.8093E+00	0.6821E-02 -0.8208E+01	0.9170E+00	0.2075E+01	0.1309F+01	0 3189F±02
30 0.11666+01	0.1399E-01-0.8564E+01	0.1015E+01	0.1874E+01	0.1449F+01	0.3167F±02
40 0.1492E+01	0.22/9E-01 -0.8889E+01	0.1106E+01	0.1720E+01	0.1578F+01	0.3150F±02
30 U.1/93E+U1	0.328/E-01 -0.9188E+01	0.1190E+01	0.1597F+01	0 16995+01	0.31275.02
BU 0.20/4E+01	0.4400E-01 -0.9467E+01	0.1271E+01	0.1496E+01	0.1813F+01	0.3126F±02
70 0.23396+01	0.5599E-01-0.9730E+01	0.1347E+01	0.1411E+01	D 1921F+01	0 3116F±02
00 U.2589E+U1	0.68/1E-01 -0.9978E+01	0.1420E+01	0.1338E+01	0.2024F+01	0.3108E+02
90 0.282/E+01	0.820/E-01-0.1021E+02	0.1490E+01	0.1275E+01	0.2124F+01	0.3101F±02
100 0,30546+01	0.9598E-01 -0.1044E+02	0.1557E+01	0.1219E+01	0.2219F+01	0.30955+02
110 0.32/26+01	0.1104E+00-0.1065E+02	0.1622E+01	0.1170F + 01	0.2312F+01	0 30005103
120 U.3482E+U1	0.1252E+00 -0.1086E+02	0.1686E+01	0.1126E+01	0.2402F+01	0 30855403
130 0.3684E+01	0.1404E+00 -0.1106E+02	0.1747E+01	0.1086E+01	0.2489F+01	0 3081F±02
140 0.38/9E+01	0.1560E+00 -0.1125E+02	0.1807E+01	0.1050E+01	0.2573F+01	0.30775+02
150 0.4068E+01	0.1719E+00 -0.1144E+02	0.1865E+01	0.1017E+01	0.2656F+01	030735+02
160 0.4252E+01	0.1881E+00 -0.1162E+02	0.1922E+01	0.9865E+00	0.2737F+01	0 3070F±02
1/0 0.4430E+01	0.2046E+00 -0.1179E+02	0.1978E+01	0.9585E+00	0.2815F+01	0.30675±02
180 0.4603E+01	0.2213E+00 -0.1196E+02	0.2033E+01	0.9326E+00	0.2892F+01	0.3064F±02
190 0.4772E+01	0.2383E+00 -0.1213E+02	.0.2086E+01	0.9085E+00	0.2968F+01	0.3061F+02
200 0.4936E+01	0.2555E+00 -0.1229E+02	0.2138E+01	0.8860E+00	0.3042F+01	0.30595+02
210 0.509/E+01	0.2729E+00 -0.1244E+02	0.2190E+01	0.8650E+00	0.3115F+01	0.30565+02
220 0.5254E+01	0.2905E+00 -0.1260E+02	0.2241E+01	0.8453E+00	0.3186F+01	0.3054F+02
230 0.540/E+01	0.3082E+00 -0.1275E+02	0.2290E+01	0.8268E+00	0.3256F+01	0.3052F±02
240 0.555/E+01	0.3261E+00 -0.1289E+02	0.2339E+01	0.8093E+00	0.3325F+01	0.3050E±02
250 0.5/05E+01	0.3442E+00 -0.1303E+02	0.2388E+01	0.7928E+00	0.3394F+01	0.3048F±02
260 0.5849E+01	0.3624E+00 -0.1317E+02	0.2435E+01	0.7771E+00	0.3461F+01	0.3047F±02
270 0.5990E+01	0.3808E+00 -0.1331E+02	0.2482E+01	0.7623E+00	0.3527F+01	0.30455+02
280 0.6129E+01	0.3993E+00 -0.1345E+02	0.2529E+01	0.7482E+00	0.3592F+01	U 301/1E+03
290 U.6266E+01	0.4180E+00 -0.1358E+02	0.2574E+01	0.7348E+00	0.3656F+01	0.3042F±02
300 0.6400E+01	0.4367E+00 -0.1371E+02	0.2619E+01	0.7220E+00	0.3719F+01	0.3041F±02
310 0.6532E+01	0.4556E+00 -0.1383E+02	0.2664E+01	0.7098E+00	0.3782F+01	U 3U30E+U3
320 0.6661E+01	0.4746E+00 -0.1396E+02	0.2708E+01	0.6981E+00	0.3844F+01	U 3U38ETU3
330 0.6789E+01	0.493/E+00 -0.1408E+02	0.2751E+01	0.6870F+00	0.3905F±01	0.30375+03
340 0.6915E+01	0.5129E+00 -0.1420E+02	0.2794E+01	0.6763E+00	0.3965F+01	0.3036F+02
350 0.7039E+01	0.5322E+00 -0.1432E+02	0.2837E+01	0.6660E+00	0.4025F+01	0.3035F+02
360 0.7161E+01	0.5516E+00 -0.1444E+02	0.2879E+01	0.6562E+00	0.4084F+01	0.3033E+02
3/0 0.7281E+01	0.5711E+00 -0.1455E+02	0.2921E+01	0.6467E+00	0.4143F+01	0.3032F+02
380 0./399E+01	0.5906E+00 -0.1467E+02	0.2962E+01	0.6376E+00	0.4201F+01	0.3031F+02
390 0.7516E+01	0.6103E+00 -0.1478E+02	0.3003E+01	0.6288E+00	0.4258F+01	0.30305+02
400 0.7632E+01	0.6300E+00 -0.1489E+02	0.3044E+01	0.6203E+00	0.4315E+01	0.3030F+02
410 0.7746E+01	0.6499E+00 -0.1500E+02	0.3084E+01	0.6121E+00	0.4371F+01	0.3029F±02
420 0.7858E+01	0.6697E+00 -0.1510E+02	0.3124E+01	0.6042E+00	0.4426F+01	0.3028F±02
430 0.7969E+01	0.6897E+00 -0.1521E+02	0.3163E+01	0.5966E+00	0.4482F+01	0.3027F+02
440 0.8079E+01	0.7097E+00 -0.1531E+02	0.3202E+01	0.5892E+00	0.4536F+01	0.3026F+02
450 0.8187E+01	0.7298E+00 -0.1541E+02	0.3241E+01	0.5821E+00	0.4591F+01	0.3025F+02
460 0.8294E+01	0.7500E+00 -0.1552E+02	0.3279E+01	0.5752E+00	0.4644F+01	0.3025F+02
4/0 0.8400E+01	0.7702E+00 -0.1562E+02	0.3318E+01	0.5684E+00	0.4698E+01	0.3024E+02

 480
 0.8505E+01
 0.7905E+00 -0.1571E+02
 0.3355E+01
 0.5619E+00
 0.4751E+01
 0.3023E+02

 490
 0.8609E+01
 0.8109E+00 -0.1581E+02
 0.3393E+01
 0.5556E+00
 0.4803E+01
 0.3022E+02

 500
 0.8711E+01
 0.8313E+00 -0.1591E+02
 0.3430E+01
 0.5495E+00
 0.4855E+01
 0.3022E+02

 510
 0.8812E+01
 0.8517E+00 -0.1600E+02
 0.3467E+01
 0.5436E+00
 0.4907E+01
 0.3021E+02

 520
 0.8913E+01
 0.8723E+00 -0.1610E+02
 0.3504E+01
 0.5378E+00
 0.4958E+01
 0.3021E+02

 530
 0.9012E+01
 0.8928E+00 -0.1619E+02
 0.3541E+01
 0.5321E+00
 0.5009E+01
 0.3020E+02

 540
 0.9110E+01
 0.9135E+00 -0.1628E+02
 0.3577E+01
 0.5267E+00
 0.5060E+01
 0.3019E+02

 550
 0.9208E+01
 0.9341E+00 -0.1637E+02
 0.3613E+01
 0.5213E+00
 0.5110E+01
 0.3019E+02

 564
 0.9342E+01
 0.9632E+00 -0.1650E+02
 0.3661E+01
 0.5144E+00
 0.5177E+01
 0.3018E+02

SHARE CARRESTS OF A STREET, AND ADDRESS OF